Thermal and Nonthermal Inactivation of Foodborne Pathogens on Low-Moisture Foods



DOI:
https://doi.org/10.57252/jrpfoods.2023.5Keywords:
Low-moisture food, Thermal processing, Nonthermal processing, Predictive model, Foodborne pathogensAbstract
Low-moisture foods (LMF) are generally regarded as safe because microbes typically do not survive in water activity less than 0.85. Previous studies have shown that pathogens are capable to persist in dry conditions for an extended period and may acquire resistance to subsequent killing steps. As a result, there are major foodborne outbreaks and product recalls associated with LMF causing hospitalizations and even death. Given that the persistence of the foodborne pathogens in LMF is not widely understood. The objective of this review is to provide the current knowledge of thermal and nonthermal treatments of foodborne pathogens in LMF and discuss the effectiveness of thermal and nonthermal treatments for LMF processing. A total of 137 articles were used after inclusion and exclusion criteria were applied. Many parameters affect the effectiveness of the treatments such as water activity, temperature, time, product formulation. Predictive models for instance Bigelow, Weibull, and Kopelman model can be used to design the inactivation steps in LMF. Different treatments are needed to inactivate different LMF products thus food manufacturers should implement the most effective way to kill the pathogen according to the food produced.
References
Acuff, J C, Wu, J., Marik, C., Waterman, K., Gallagher, D., Huang, H., Williams, R. C., and Ponder, M. A. (2020). Thermal inactivation of Salmonella, Shiga toxin-producing Escherichia coli, Listeria monocytogenes, and a surrogate (Pediococcus acidilactici) on raisins, apricot halves, and macadamia nuts using vacuum-steam pasteurization. International Journal of Food Microbiology, 333, 108814.
Ahmad, N. H., Öztabak, C., Marks, B. P., and Ryser, E. T. (2019). Effect of talc as a dry-inoculation carrier on thermal resistance of Enterococcus faecium NRRL B-2354 in almond meal. Journal of Food Protection, 82(7), 1110–1115.
Alshammari, J., Xu, J., Tang, J., Sablani, S., and Zhu, M.-J. (2020a). Thermal resistance of Salmonella in low-moisture high-sugar products. Food Control, 114, 107255.
Anderson, N. M., Keller, S. E., Mishra, N., Pickens, S., Gradl, D., Hartter, T., Rokey, G., Dohl, C., Plattner, B., Chirtel, S., Chirtel, S., and Grasso-Kelley, E. M. (2017). Salmonella Inactivation During Extrusion of an Oat Flour Model Food. Journal of Food Science, 82(3), 738–743.
Ballom, K., Dhowlaghar, N., Tsai, H., Yang, R., and Tang, J. (2021). Radiofrequency pasteurization against Salmonella and Listeria monocytogenes in cocoa powder. LWT, 145, 111490.
Ballom, K. F., Tsai, H.-C., Taylor, M., Tang, J., and Zhu, M.-J. (2020). Stability of Listeria monocytogenes in non-fat dry milk powder during isothermal treatment and storage. Food Microbiology, 87, 103376
Ban, C., Lee, D. H., Jo, Y., Bae, H., Seong, H., Kim, S. O., Lim, S., and Choi, Y. J. (2018). Use of superheated steam to inactivate Salmonella enterica serovars Typhimurium and Enteritidis contamination on black peppercorns, pecans, and almonds. Journal of Food Engineering, 222, 284–291.
Ban, G.-H., and Kang, D.-H. (2016). Effectiveness of superheated steam for inactivation of Escherichia coli O157: H7, Salmonella Typhimurium, Salmonella Enteritidis phage type 30, and Listeria monocytogenes on almonds and pistachios. International Journal of Food Microbiology, 220, 19–25.
Bang, J., Choi, M., Jeong, H., Lee, S., Kim, Y., Ryu, J.-H., and Kim, H. (2017). Heat tolerances of Salmonella, Cronobacter sakazakii, and Pediococcus acidilactici inoculated into galactooligosaccharide. Journal of Food Protection, 80(7), 1123–1127.
Bermúdez-Aguirre, D., and Corradini, M. G. (2012). Inactivation kinetics of Salmonella spp. under thermal and emerging treatments: A review. Food Research International, 45(12), 700–712.
Beuchat, L.R., and Mann, D. A. (2011a). Inactivation of Salmonella on pecan nutmeats by hot air treatment and oil roasting. Journal of Food Protection, 74(9), 1441–1450.
Beuchat, L R, and Mann, D. A. (2011b). Inactivation of Salmonella on in-shell pecans during conditioning treatments preceding cracking and shelling. Journal of Food Protection, 74(4), 588–602.
Beuchat, Larry R., Komitopoulou, E., Beckers, H., Betts, R. P., Bourdichon, F., Fanning, S., Joosten, H. M., and Kuile, B. H. T. (2013). Low-water activity foods: Increased concern as vehicles of foodborne pathogens. Journal of Food Protection, 76(1), 150–172.
Boreddy, S. R., Rose, D. J., and Subbiah, J. (2019). Radiofrequency-Assisted Thermal Processing of Soft Wheat Flour. Journal of Food Science, 84(9), 2528–2536.
CDC. (2017). Learn about the symptoms of Listeria. Centers for Disease Control and Prevention. Retrieved February 12, 2022, from https://www.cdc.gov/listeria/symptoms.html
CDC. (2022). Questions and Answers | E. coli | CDC. Centers for Disease Control and Prevention. Retrieved February 12, 2022, from https://www.cdc.gov/ecoli/general/index.html
Channaiah, L. H., Michael, M., Acuff, J. C., Phebus, R. K., Thippareddi, H., and Milliken, G. (2021). Thermal inactivation of Salmonella during hard and soft cookies baking process. Food Microbiology, 100, 103874
Chen, C., Liao, C., Wongso, I., Wang, W., Khir, R., Huang, G., Niederholze, F., Wang, L., and Pan, Z. (2021a). Drying and disinfection of off-ground harvested almonds using step-down temperature hot air heating. LWT, 152, 112282
Chen, L., Irmak, S., Chaves, B. D., and Subbiah, J. (2020). Microbial challenge study and quality evaluation of cumin seeds pasteurized by continuous radio frequency processing. Food Control, 111, 107052
Chen, L., Jung, J., Chaves, B. D., Jones, D., Negahban, M., Zhao, Y., and Subbiah, J. (2021b). Challenges of dry hazelnut shell surface for radio frequency pasteurization of inshell hazelnuts. Food Control, 125, 107948
Chen, Y. Y., Temelli, F., and Gänzle, M. G. (2017). Mechanisms of inactivation of dry Escherichia coli by high-pressure carbon dioxide. Applied and Environmental Microbiology, 83(10), e00062-17
Chen, L., Wei, X., Irmak, S., Chaves, B. D., & Subbiah, J. (2019). Inactivation of Salmonella enterica and Enterococcus faecium NRRL B-2354 in cumin seeds by radiofrequency heating. Food Control, 103, 59–69.
Cheng, T., and Wang, S. (2018). Influence of storage temperature/time and atmosphere on survival and thermal inactivation of Escherichia coli ATCC 25922 inoculated to almond powder. Food Control, 86, 350–358.
Cheng, T., and Wang, S. (2019). Modified atmosphere packaging pre-storage treatment for thermal control of E. coli ATCC 25922 in almond kernels assisted by radio frequency energy. Journal of Food Engineering, 246, 253–260.
Cheng, Teng, Ramaswamy, H., Xu, R., Liu, Q., Lan, R., and Wang, S. (2020). Fifty Ohm radio frequency heating treatment under controlled atmosphere for inactivating Escherichia coli ATCC 25922 inoculated on almond kernels. LWT, 123,, 109124.
Codex. (2018). Code of Hygienic Practice for Low-Moisture Foods. CXC 75-2015 Retrieved February 12, 2022, from https://www.fao.org/fao-who-codexalimentarius/codex-texts/codes-of-practice/en/
Daryaei, H., Peñaloza, W., Hildebrandt, I., Krishnamurthy, K., Thiruvengadam, P., and Wan, J. (2018). Heat inactivation of Shiga toxin-producing Escherichia coli in a selection of low-moisture foods. Food Control, 85, 48–56.
Daryaei, H., Sui, Q., Liu, H., Rehkopf, A., Peñaloza, W., Rytz, A., Luo, Y., and Wan, J. (2020). Heat resistance of Shiga toxin-producing Escherichia coli and potential surrogates in wheat flour at two moisture levels. Food Control, 108, 106788.
Deen, B., and Diez-Gonzalez, F. (2019). Assessment of Pediococcus acidilactici ATCC 8042 as potential Salmonella surrogate for thermal treatments of toasted oats cereal and peanut butter. Food Microbiology, 83, 187–192.
Dhaliwal, H. K., Gänzle, M., and Roopesh, M. S. (2021). Influence of drying conditions, food composition, and water activity on the thermal resistance of Salmonella enterica. Food Research International, 147, 110548.
Dhowlaghar, N., Tang, J., and Zhu, M.-J. (2021). Thermal inactivation of Salmonella, Listeria monocytogenes and Enterococcus faecium NRRL B-2354 in desiccated shredded coconut. LWT, 149, 111851
Fan, X., Baik, J., and Gurtler, J. B. (2021). Thermal reduction of Bacillus spp. in naturally contaminated mesquite flour with two different water activities. Journal of Food Protection, 84(3), 490–496.
Falkenstein, D. (2017). Ginger powder with salmonella recalled. Retrieved February 12, 2022 from https://www.foodpoisonjournal.com/food-recall/ginger-powder-with-salmonella-recalled/
Food and Drug Administration. (2019). Mountain Mel’s Essential Goods, LLC Recalls The Milk Lady's Herbal Tea Blend , Peaceful Baby Herbal Tea Blend , and Diges-teas Herbal Tea Blend, Because of Possible Health Risk. Retrieved February 12, 2022 from https://www.fda.gov/safety/recalls-market-withdrawals-safety-alerts/mountain-mels-essential-goods-llc-recalls-milk-ladys-herbal-tea-blend-peaceful-baby-herbal-tea-blend#:~:text=Mountain%20Mel's%20Essential%20Goods%2C%20LLC%20of%20Welches%2C%20OR%20is%20recalling,cause%20serious%20and%20sometimes%20fatal
Forghani, F., den Bakker, M., Futral, A. N., and Diez-Gonzalez, F. (2019). Long-term survival and thermal death kinetics of enterohemorrhagic Escherichia coli serogroups O26, O103, O111, and O157 in wheat flour. Applied and Environmental Microbiology, 84(13).
Gautam, B., Govindan, B. N., Michael, G., & Roopesh, M. S. (2020). International Journal of Food Microbiology Influence of water activity on the heat resistance of Salmonella enterica in selected low-moisture foods. 334(April).
Garces-Vega, F. J., Ryser, E. T., & Marks, B. P. (2019). Relationships of water activity and moisture content to the thermal inactivation kinetics of Salmonella in low-moisture foods. Journal of Food Protection, 82(6), 963–970.
Grasso-Kelley, E. M., Liu, X., Halik, L. A., and Douglas, B. (2021). Evaluation of hot-air drying to inactivate Salmonella and Enterococcus faecium on apple pieces. Journal of Food Protection, 84(2), 240–248.
He, Y., Guo, D., Yang, J., Tortorello, M. L., and Zhang, W. (2011). Survival and heat resistance of Salmonella enterica and Escherichia coli O157:H7 in peanut butter. Applied and Environmental Microbiology, 77(23), 8434–8438.
Hu, S., Zhao, Y., Hayouka, Z., Wang, D., and Jiao, S. (2018). Inactivation kinetics for Salmonella Typhimurium in red pepper powders treated by radio frequency heating. Food Control, 85, 437–442.
Izurieta, W. P., and Komitopoulou, E. (2012). Effect of moisture on Salmonella spp. heat resistance in cocoa and hazelnut shells. Food Research International, 45(2), 1087–1092.
Jeong, S., Marks, B. P., and James, M. K. (2017). Comparing thermal process validation methods for Salmonella inactivation on almond kernels. Journal of Food Protection, 80(1), 169–176.
Jiao, S., Zhang, H., Hu, S., and Zhao, Y. (2019). Radio frequency inactivation kinetics of Bacillus cereus spores in red pepper powder with different initial water activity. Food Control, 105, 174–179.
Keller, S E, Grasso, E. M., Halik, L. A., Fleischman, G. J., Chirtel, S. J., and Grove, S. F. (2012). Effect of growth on the thermal resistance and survival of Salmonella Tennessee and Oranienburg in peanut butter, measured by a new thin-layer thermal death time device. Journal of Food Protection, 75(6), 1125–1130.
Keller, Susanne E., Stam, C. N., Gradl, D. R., Chen, Z., Larkin, E. L., Pickens, S. R., and Chirtel, S. J. (2015). Survival of Salmonella on chamomile, peppermint, and green tea during storage and subsequent survival or growth following tea brewing. Journal of Food Protection, 78(4), 661–667.
Kharel, K., Yemmireddy, V. K., Graham, C. J., Prinyawiwatkul, W., and Adhikari, A. (2018). Hot water treatment as a kill-step to inactivate Escherichia coli O157:H7, Salmonella enterica, Listeria monocytogenes and Enterococcus faecium on in-shell pecans. LWT, 97, 555–560.
Kottapalli, B., Nguyen, S. P. V., Dawson, K., Casulli, K., Knockenhauer, C., and Schaffner, D. W. (2020). Evaluating the risk of salmonellosis from dry roasted sunflower seeds. Journal of Food Protection, 83(1), 17–27.
Lang, E., Chemlal, L., Molin, P., Guyot, S., Alvarez-Martin, P., Perrier-Cornet, J.-M., Dantigny, P., and Gervais, P. (2017). Modeling the heat inactivation of foodborne pathogens in milk powder: High relevance of the substrate water activity. Food Research International, 99, 577–585.
Lang, E., Guyot, S., Peltier, C., Alvarez-Martin, P., Perrier-Cornet, J.-M., and Gervais, P. (2018). Cellular injuries in Cronobacter sakazakii CIP 103183T and Salmonella enterica exposed to drying and subsequent heat treatment in milk powder. Frontiers in Microbiology, 9, 475
Lau, S. K., and Subbiah, J. (2020). TDT Sandwich: An open source dry heat system for characterizing the thermal resistance of microorganisms. HardwareX, 8, e00114
Lau, S. K., Panth, R., Chaves, B. D., Weller, C. L., & Subbiah, J. (2021). Thermal inactivation kinetics of Salmonella and Enterococcus faecium NRRL-B2354 on whole chia seeds (Salvia hispanica L.). Journal of Food Protection, 84(8), 1357–1365.
Li, C., Huang, L., and Chen, J. (2014). Comparative study of thermal inactivation kinetics of Salmonella spp. in peanut butter and peanut butter spread. Food Control, 45, 143–149.
Limcharoenchat, P., Buchholz, S. E., James, M. K., Hall, N. O., Ryser, E. T., and Marks, B. P. (2018). Inoculation protocols influence the thermal resistance of Salmonella Enteritidis PT 30 in fabricated almond, wheat, and date products. Journal of Food Protection, 81(4), 606–613.
Lin, Y., Subbiah, J., Chen, L., Verma, T., and Liu, Y. (2020). Validation of radio frequency assisted traditional thermal processing for pasteurization of powdered infant formula milk. Food Control, 109, 106897.
Liu, S., Ozturk, S., Xu, J., Kong, F., Gray, P., Zhu, M.-J., Sablani, S. S., and Tang, J. (2018a). Microbial validation of radio frequency pasteurization of wheat flour by inoculated pack studies. Journal of Food Engineering, 217, 68–74.
Liu, S., Rojas, R. V., Gray, P., Zhu, M.-J., and Tang, J. (2018b). Enterococcus faecium as a Salmonella surrogate in the thermal processing of wheat flour: Influence of water activity at high temperatures. Food Microbiology, 74, 92–99.
Liu, X., Fan, X., Wang, W., Yao, S., and Chen, H. (2021). Wetting raw almonds to enhance pulse light inactivation of Salmonella and preserve quality. Food Control, 125, 107946.
Lopes, S. M., Carmo, D., and Eduardo, C. (2020). Effect of curing and heat treatments on the Salmonella survival and physicochemical properties of chicken egg yolk. Food Research International, 137, 109680.
Malekmohammadi, S., Shah, M. K., Townsend Ramsett, M. K., and Bergholz, T. M. (2020). Survival and thermal resistance among four Salmonella serovars inoculated onto flaxseeds. Food Microbiology, 91, 103516.
Michael, M., Phebus, R. K., Thippareddi, H., Subbiah, J., Birla, S. L., and Schmidt, K. A. (2014). Validation of radio-frequency dielectric heating system for destruction of Cronobacter sakazakii and Salmonella species in nonfat dry milk. Journal of Dairy Science, 97(12), 7316–7324.
Mohammad, Z. H., Murano, E. A., Moreira, R. G., and Castillo, A. (2020). Effect of post inoculation drying procedures on the reduction of Salmonella on almonds by thermal treatments. Food Research International, 130, 108857.
Mondal, A., Buchanan, R. L., and Lo, Y. M. (2014). Computational fluid dynamics approaches in quality and hygienic production of semisolid low-moisture foods: A review of critical factors. Journal of Food Science, 79(10), R1861–R1870.
Moussavi, M., Frelka, J. C., Hildebrandt, I. M., Marks, B. P., and Harris, L. J. (2020). Thermal resistance of foodborne pathogens and Enterococcus faecium NRRL B-2354 on inoculated pistachios. Journal of Food Protection, 83(7), 1125–1136.
Nascimento, M. S., Brum, D. M., Pena, P. O., Berto, M. I., and Efraim, P. (2012). Inactivation of Salmonella during cocoa roasting and chocolate conching. International Journal of Food Microbiology, 159(3), 225–229.
Newkirk, J. J., Wu, J., Acuff, J. C., Caver, C. B., Mallikarjunan, K., Wiersema, B. D., Williams, R. C., and Ponder, M. A. (2018). Inactivation of Salmonella enterica and surrogate Enterococcus faecium on whole black peppercorns and cumin seeds using vacuum steam pasteurization. Frontiers in Sustainable Food Systems, 2, 48.
Ozturk, S, Kong, F., and Singh, R. K. (2020). Evaluation of Enterococcus faecium NRRL B-2354 as a potential surrogate of Salmonella in packaged paprika, white pepper and cumin powder during radio frequency heating. Food Control, 108, 106833.
Ozturk, Samet, Liu, S., Xu, J., Tang, J., Chen, J., Singh, R. K., and Kong, F. (2019). Inactivation of Salmonella Enteritidis and Enterococcus faecium NRRL B-2354 in corn flour by radio frequency heating with subsequent freezing. LWT, 111, 782–789.
Pan, Y., Sun, D. W., and Han, Z. (2017). Applications of electromagnetic fields for nonthermal inactivation of microorganisms in foods: An overview. Trends in Food Science and Technology, 64, 13–22.
Park, H. W., Xu, J., Balasubramaniam, V. M., and Snyder, A. B. (2021). The effect of water activity and temperature on the inactivation of Enterococcus faecium in peanut butter during superheated steam sanitation treatment. Food Control, 125, 107942.
Paula, A., Pereira, M., Stelari, H. A., Carlin, F., and Sant, A. S. (2019). Inactivation kinetics of Bacillus cereus and Geobacillus stearothermophilus spores through roasting of cocoa beans and nibs. LWT - Food Science and Technology, 111, 394–400.
Pelaez, M. A. B., Anapi, G. R., Bautista, D. V., Dallo, M. D. P., Libunao, J. C. M., and Gabriel, A. A. (2020). Thermal inactivation of Salmonella enterica in Philippine flowing-type peanut butter. LWT, 129, 109507.
Pereira, A. A. M., Prestes, F. S., Silva, A. C. M., and Nascimento, M. S. (2020). Evaluation of the thermal resistance of Salmonella Typhimurium ATCC 14028 after long-term blanched peanut kernel storage. LWT, 117, 108701
Pérez-Reyes, M.E., Jie, X., Zhu, M.-J., Tang, J., and Barbosa-Cánovas, G. V. (2021). Influence of low water activity on the thermal resistance of Salmonella Enteritidis PT30 and Enterococcus faecium as its surrogate in egg powders. Food Science and Technology International, 27(2), 184–193.
Prasad, A., Gänzle, M., & Roopesh, M. S. (2019). Inactivation of Escherichia coli and Salmonella using 365 and 395 nm high intensity pulsed light emitting diodes. Foods, 8(12), 679.
Quinn, A. R., Liao, R. F., Steele, F. M., Jefferies, L. K., and Taylor, B. J. (2021). Isothermal inactivation of Salmonella, Listeria monocytogenes, and Enterococcus faecium NRRL B-2354 in peanut butter, powder infant formula, and wheat flour. Food Control, 121, 107582.
Rachon, G., Peñaloza, W., and Gibbs, P. A. (2016). Inactivation of Salmonella, Listeria monocytogenes and Enterococcus faecium NRRL B-2354 in a selection of low-moisture foods. International Journal of Food Microbiology, 231, 16–25.
Rifna, E. J., Kumar, S., Chakraborty, S., & Dwivedi, M. (2019). Effect of thermal and non-thermal techniques for microbial safety in food powder: Recent advances. Food Research International, 126, 108654.
Sekhon, A. S., Singh, A., Unger, P., Babb, M., Yang, Y., and Michael, M. (2021). Survival and thermal resistance of Salmonella in dry and hydrated nonfat dry milk and whole milk powder during extended storage. International Journal of Food Microbiology, 337, 108950.
Shah, M., Eklund, B., Conde Lima, L. G., Bergholz, T., and Hall, C. (2018). Microbial and chemical shelf-life of vacuum steam-pasteurized whole flaxseed and milled flaxseed. Journal of Food Science, 83(2), 300–308.
Shah, M. K., Asa, G., Sherwood, J., Graber, K., and Bergholz, T. M. (2017). Efficacy of vacuum steam pasteurization for inactivation of Salmonella PT 30, Escherichia coli O157:H7 and Enterococcus faecium on low-moisture foods. International Journal of Food Microbiology, 244, 111–118.
Silva, F. V. M., and Gibbs, P. A. (2012). Thermal pasteurization requirements for the inactivation of Salmonella in foods. Food Research International, 45(2), 695–699.
Smith, D. F., Hildebrandt, I. M., Casulli, K. E., Dolan, K. D., and Marks, B. P. (2016). Modeling the effect of temperature and water activity on the thermal resistance of Salmonella Enteritidis PT 30 in wheat flour. Journal of Food Protection, 79(12), 2058–2065.
Smith, D. F., and Marks, B. P. (2015). Effect of rapid product desiccation or hydration on thermal resistance of Salmonella enterica serovar Enteritidis PT 30 in wheat flour. Journal of Food Protection, 78(2), 281–286.
Snelling, J., Malekmohammadi, S., Bergholz, T. M., Ohm, J., and Simsek, S. (2020). Effect of vacuum steam treatment of hard red spring wheat on flour quality and reduction of Escherichia coli O121 and Salmonella Enteritidis PT 30. Journal of Food Protection, 83(5), 836–843.
Song, W.-J., and Kang, D.-H. (2021). Influence of packaging methods on the dry heat inactivation of Salmonella Typhimurium, Salmonella Senftenberg, and Salmonella Enteritidis PT 30 on almonds. LWT, 143,111121.
Steinbrunner, P. J., Limcharoenchat, P., Suehr, Q. J., Ryser, E. T., Marks, B. P., and Jeong, S. (2019). Effect of food structure, water activity, and long-term storage on X-ray irradiation for inactivating Salmonella Enteritidis PT30 in low-moisture foods. Journal of Food Protection, 82(8), 1405–1411.
Suehr, Q. J., Anderson, N. M., and Keller, S. E. (2019). Desiccation and thermal resistance of Escherichia coli O121 in wheat flour. Journal of Food Protection, 82(8), 1308–1313.
Syamaladevi, R. M., Tadapaneni, R. K., Xu, J., Villa-Rojas, R., Tang, J., Carter, B., Sablani, S., and Marks, B. (2016). Water activity change at elevated temperatures and thermal resistance of Salmonella in all purpose wheat flour and peanut butter. Food Research International, 81, 163–170.
Taylor, M. H., Tsai, H.-C., Rasco, B., Tang, J., and Zhu, M.-J. (2018). Stability of Listeria monocytogenes in wheat flour during extended storage and isothermal treatment. Food Control, 91, 434–439.
Tsai, H.-C., Ballom, K. F., Xia, S., Tang, J., Marks, B. P., and Zhu, M.-J. (2019a). Evaluation of Enterococcus faecium NRRL B-2354 as a surrogate for Salmonella during cocoa powder thermal processing. Food Microbiology, 82, 135–141.
Tsai, H.-C., Taylor, M. H., Song, X., Sheng, L., Tang, J., and Zhu, M.-J. (2019b). Thermal resistance of Listeria monocytogenes in natural unsweetened cocoa powder under different water activity. Food Control, 102, 22–28.
Van Doren, J. M., Neil, K. P., Parish, M., Gieraltowski, L., Gould, L. H., and Gombas, K. L. (2013). Foodborne illness outbreaks from microbial contaminants in spices, 1973-2010. Food Microbiology, 36(2), 456–464.
Verma, T., Wei, X., Kiatlau, S., Bianchini, A., Eskridge, K. M., Stratton, J., Anderson, N. M., Thippareddi, H., & Subbiah, J. (2018). Response surface methodology for Salmonella inactivation during extrusion processing of oat flour. Journal of Food Protection, 81(5), 815–826.
Verma, T., Chaves, B. D., Howell, T., andand Subbiah, J. (2021a). Thermal inactivation kinetics of Salmonella and Enterococcus faecium NRRL B-2354 on dried basil leaves. Food Microbiology, 96., 103710.
Verma, T., Chaves, B. D., Irmak, S., and Subbiah, J. (2021b). Pasteurization of dried basil leaves using radio frequency heating: A microbial challenge study and quality analysis. Food Control, 124, 107932.
Verma, T., and Subbiah, J. (2019). Conical twin-screw extrusion is an effective inactivation process for Salmonella in low-moisture foods at temperatures above 65 °C. LWT, 114, 108369.
Villa-Rojas, R., Tang, J., Wang, S., Gao, M., Kang, D.-H., Mah, J.-H., Gray, P., Sosa-Morales, M. E., and Pez-Malo, A. L. (2013). Thermal inactivation of Salmonella Enteritidis PT 30 in almond kernels as influenced by water activity. Journal of Food Protection, 76(1), 26–32.
Villa-Rojas, R., Zhu, M.-J., Marks, B. P., and Tang, J. (2017a). Radiofrequency inactivation of Salmonella Enteritidis PT 30 and Enterococcus faecium in wheat flour at different water activities. Biosystems Engineering, 156, 7–16.
Villa-Rojas, R., Zhu, M.-J., Paul, N. C., Gray, P., Xu, J., Shah, D. H., and Tang, J. (2017b). Biofilm forming Salmonella strains exhibit enhanced thermal resistance in wheat flour. Food Control, 73, 689–695.
Wason, S., Verma, T., and Subbiah, J. (2021). Validation of process technologies for enhancing the safety of low-moisture foods: A review. Comprehensive Reviews in Food Science and Food Safety, 20(5), 4950-4992
Wei, X., Agarwal, S., and Subbiah, J. (2021a). Heating of milk powders at low water activity to 95°C for 15 minutes using hot air-assisted radio frequency processing achieved pasteurization. Journal of Dairy Science, 104(9), 9607–9616.
Wei, X., Kiat Lau, S., Stratton, J., Irmak, S., Bianchini, A., and Subbiah, J. (2018). Radio-frequency processing for inactivation of Salmonella enterica and Enterococcus faecium NRRL B-2354 in black peppercorn. Journal of Food Protection, 81(10), 1685–1695.
Wei, X., Lau, S. K., Chaves, B. D., Danao, M.-G. C., Agarwal, S., and Subbiah, J. (2020a). Effect of water activity on the thermal inactivation kinetics of Salmonella in milk powders. Journal of Dairy Science, 103(8), 6904–6917.
Wei, X., Lau, S. K., Reddy, B. S., and Subbiah, J. (2020b). A microbial challenge study for validating continuous radio-frequency assisted thermal processing pasteurization of egg white powder. Food Microbiology, 85, 103306.
Wei, X., Verma, T., Danao, M.-G. C., Ponder, M. A., and Subbiah, J. (2021b). Gaseous chlorine dioxide technology for improving microbial safety of spices. Innovative Food Science and Emerging Technologies, 73, 102783.
Wei, X, Agarwal, S., and Subbiah, J. (2021c). Evaluation of Enterococcus faecium NRRL B-2354 as a surrogate for Salmonella enterica in milk powders at different storage times and temperatures. Journal of Dairy Science, 104(1), 198–210.
Wei, X, Chen, L., Chaves, B. D., Ponder, M. A., and Subbiah, J. (2021d). Modeling the effect of temperature and relative humidity on the ethylene oxide fumigation of Salmonella and Enterococcus faecium in whole black peppercorn. LWT, 140.
Wei, Xinyao, Lau, S. K., Stratton, J., Irmak, S., and Subbiah, J. (2019). Radiofrequency pasteurization process for inactivation of Salmonella spp. and Enterococcus faecium NRRL B-2354 on ground black pepper. Food Microbiology, 82, 388–397.
Wei, Xinyao, Vasquez, S., Thippareddi, H., and Subbiah, J. (2021e). Evaluation of Enterococcus faecium NRRL B-2354 as a surrogate for Salmonella in ground black pepper at different water activities. International Journal of Food Microbiology, 344, 109114.
Xie, Y., Cheng, T., Wei, L., Zhu, M.-J., Sablani, S. S., and Tang, J. (2021). Thermal inactivation of Salmonella Enteritidis PT30 in ground cinnamon as influenced by water activity and temperature. Food Control, 124, 107935.
Xu, J., Shah, D. H., Song, J., and Tang, J. (2020a). Changes in cellular structure of heat-treated Salmonella in low-moisture environments. Journal of Applied Microbiology, 129(2), 434–442.
Xu, J., Tang, J., Jin, Y., Song, J., Yang, R., Sablani, S. S., and Zhu, M.-J. (2019). High temperature water activity as a key factor influencing survival of Salmonella Enteritidis PT30 in thermal processing. Food Control, 98, 520–528.
Xu, J., Yang, R., Jin, Y., Barnett, G., and Tang, J. (2020b). Modeling the temperature-dependent microbial reduction of Enterococcus faecium NRRL B-2354 in radio-frequency pasteurized wheat flour. Food Control, 107, 106778.
Yan, R., Pinto, G., Taylor-Roseman, R., Cogan, K., D’Alesandre, G., and Kovac, J. (2021). Evaluation of the thermal inactivation of a Salmonella serotype Oranienburg strain during cocoa roasting at conditions relevant to the fine chocolate industry. Frontiers in Microbiology, 12, 576337.
Yang, R., Xie, Y., Lombardo, S. P., and Tang, J. (2021). Oil protects bacteria from humid heat in thermal processing. Food Control, 123, 107690.
Yang, R., Xu, J., Lombardo, S. P., Ganjyal, G. M., and Tang, J. (2020). Desiccation in oil protects bacteria in thermal processing. Food Research International, 137, 109519.
Yuqiao, J. I. N., Pickens, S. R., Hildebrandt, I. M., Burbick, S. J., Grasso-Kelley, E. M., Keller, S. E., and Anderson, N. M. (2018). Thermal inactivation of Salmonella agona in Low–Water activity foods: Predictive models for the combined effect of temperature, water activity, and food component. Journal of Food Protection, 81(9), 1411–1417.
Zhang, B., Zhang, L., Cheng, T., Guan, X., and Wang, S. (2020a). Effects of water activity, temperature and particle size on thermal inactivation of Escherichia coli ATCC 25922 in red pepper powder. Food Control, 107, 106817.
Zhang, H., Seck, H. L., and Zhou, W. (2021a). Inactivation of Salmonella Typhimurium, Escherichia coli O157:H7, Staphylococcus aureus, and Listeria monocytogenes in cardamom using 150 KeV low-energy X-ray. Innovative Food Science and Emerging Technologies, 67, 102556.
Zhang, L, Lyng, J. G., Xu, R., Zhang, S., Zhou, X., and Wang, S. (2019). Influence of radio frequency treatment on in-shell walnut quality and Staphylococcus aureus ATCC 25923 survival. Food Control, 102, 197–205.
Zhang, Lihui, Kou, X., Zhang, S., Cheng, T., and Wang, S. (2018a). Effect of water activity and heating rate on Staphylococcus aureus heat resistance in walnut shells. International Journal of Food Microbiology, 266, 282–288.
Zhang, S, Lan, R., Zhang, L., and Wang, S. (2021b). Computational modelling of survival of Aspergillus flavus in peanut kernels during hot air-assisted radio frequency pasteurization. Food Microbiology, 95, 103682.
Zhang, Shuang, Zhang, L., Lan, R., Zhou, X., Kou, X., and Wang, S. (2018b). Thermal inactivation of Aspergillus flavus in peanut kernels as influenced by temperature, water activity and heating rate. Food Microbiology, 76, 237–244.
Zhang, Y., Keller, S. E., and Grasso-Kelley, E. M. (2017). Fate of Salmonella throughout production and refrigerated storage of tahini. Journal of Food Protection, 80(6), 940–946.
Zhang, Y., Xie, Y., Tang, J., Wang, S., Wang, L., Zhu, G., Li, X., and Liu, Y. (2020b). Thermal inactivation of Cronobacter sakazakii ATCC 29544 in powdered infant formula milk using thermostatic radio frequency. Food Control, 114, 107270.
Zheng, A., Zhang, L., and Wang, S. (2017). International Journal of Food Microbiology Veri fi cation of radio frequency pasteurization treatment for controlling Aspergillus parasiticus on corn grains. International Journal of Food Microbiology, 249, 27–34.
Zhou, Z., Zuber, S., Campagnoli, M., Putallaz, T., Devlieghere, F., and Uyttendaele, M. (2019). Effect of mild steaming treatment on the inactivation of Salmonella, Listeria monocytogenes, Escherichia coli O157:H7 and their surrogates on black peppercorns. Food Control, 106, 106726.
Zhu, M.-J., Song, X., Tsai, H.-C., Shen, X., Taylor, M., and Tang, J. (2021). Desiccation and thermal resistance of Salmonella and Enterococcus faecium NRRL B-2354 in almond meal as impacted by water activity and storage temperature. Food Control, 126, 108037.
Zhu, M., Song, X., Shen, X., and Tang, J. (2020). Listeria monocytogenes in almond meal: desiccation stability and isothermal inactivation. Frontiers in Microbiology, 11, 1689.
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2023 The Journal of Raw Materials to Processed Foods

This work is licensed under a Creative Commons Attribution 4.0 International License.