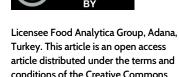
Recieved: 25/06/2021

Revised: 25/08/2021

Accepted article published: 30/08/2021


Published online: 31/08/2021

# Volatiles of canned tuna fish and the effects of different parameters: A Review

### **Mehmet Yetisen**

Department of Food Engineering, Faculty of Engineering, Nigde Omer Halisdemir University, Nigde, Turkey

Correspondence;
Mehmet Yetisen
E-mail adress:
mehmetyetisen@ohu.edu.tr
ORCID No: 0000-0001-8347-4081



Attribution (CC-BY) license (https://creativecommons.org/licenses/by/4.0).

### **Abstract**

Tuna is one of the most important commercial fish species due to its economical and high nutritional values. There are many species of fish, which are eaten raw, used in home-cooked dishes and subject to various industrial activities, such as canning. The overall quality of fish and fishery products has become a major concern in fish industry in the world. Tuna processing methods mainly consist of freezing, cooking, smoking and canning after heat treatment like sterilization. The species used for canning are mainly yellowfin, skipjack and albacore tuna. The volatile components of tuna vary depending on the processing method. Different temperature conditions applied in canning productions significantly affect the volatile profiles. The aroma is one of the main indicators on which consumers judge the fish's freshness. Fish flavour quality is changing rapidly according to the freshness of the product, and therefore, sensorial evaluation of the flavouring is used by consumers, researchers and the fishing industry as a whole to evaluate the quality of fish. Each species of fish has a tender and distinctive aroma, which can be influenced by processing technology, post production and storage methods. Volatile compounds derived from lipid are produced mainly by oxidative-enzymatic reactions and auto oxidation of lipids. Oxidation derived volatiles play crucial roles in the formation of overall fish aroma providing them a specific aroma character. Therefore, this review highlights the impact of various parameters on volatiles of canned tuna.

Keywords: aroma, canned tuna, cooking, freezing, smoking

### 1.INTRODUCTION

Tuna is one of the most commercial fish species, due to its excellent economic and nutritional benefits. It can be consumed raw, evaluated under culinary or even industrial processes such as canning. The main processing methods for tuna are freezing, cooking, smoking and canning after being thermally processed (Miao et al., 2017). Generally, the species used for canning are yellowfin, skipjack and albacore tuna (Zhang et al., 2019). Tuna is one of the most widely consumed fish in terms of international seafood production (8%) and is sold commercially all over the world (4.3 million tonnes) (Kumar & Kocour, 2015). Tuna has a lot of differences compared to other fish in terms of growth rate, size, lifespan, maturity age and spawning period. Species which are restricted to tropical and sub-tropical areas (skipjack and yellowfin tuna) are distinguished by their small to

medium size, quick growth, and early ripening. The bluefin tuna, instead, shows the characteristics of a highly variable life with a longer spawning period and a shorter lifetime compared to other tuna species (Fromentin and Fonteneau, 2001).

Skipjack tuna has a black and purplish blue upper part and 4 to 6 stripes on the abdomen. Their body shapes are longitudinally round. While these fish prefer waters with a temperature about 25°C during their larval stage, they deserve to live in water at a temperature around 15°C when they reach the growth stage. The depth distribution ranges from about 260 meters from the surface during the day, they live near surface waters. The skipjack spawns all year long in subtropical waters, but it gets shorter and further away from the equator. Female skipjack tuna with a fork length of 41 to 87 cm can lay

8

www.journalrpfoods.com

anywhere between 80,000 and 2 million eggs (FAO, 2020a).

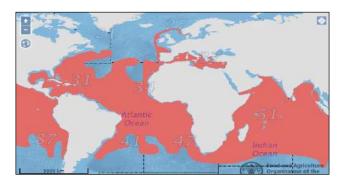



Figure 1: Habitats of Skipjack Tuna (FAO, 2020a)

As important commercial species, In 2018, the primary target of purse seine fishing in the Eastern Pacific Ocean was *Katsuwonus pelamis* with 289,000 tons (IATTC 2019). In China, large quantities of fish by-products are produced during processing of canned tuna production, including flakes, skin, heads, and viscera, and compounds such as collagens, gelatines, and bioactive peptides are obtained from these bones, heads, and black muscles (Yang et al., 2019; Liu et al., 2015; Chi et al., 2015).

Yellowfin tuna is the second tuna species mostly consumed worldwide and responsible for 27% of the total world catch (ISSF, 2015). Yellowfin tuna reached a maximum length of 208 cm and a maximum weight of 176.4 kg. The black and dark blue color and the silver colored belly characterize the Yellowfin tuna. Anal and dorsal fins are light yellow in color. These fish usually feed on fish, squid and crustaceans. Although their breeding season is known as summer, they actually multiply all year long (FAO, 2020b).



Figure 2: Habitats of Yellowfin Tuna (FAO, 2020b)

Seafood is nutritionally rich in protein, omega-3 fatty acids, unsaturated fatty acids, vitamins, micro and macronutrients, and their consumption by humans is increasing worldwide (Pieniak et al., 2010). Fish consumption reduces chronic noncommunicable diseases such as cardiovascular disease, mental disorders, rheumatoid arthritis, as well as several cancers, and promotes normal neuronal development in children (Di Giuseppe et al., 2014; Swanson et al., 2012; Virtanen et al., 2008). Moreover, the consumption of omega-3 fatty acid has proved its role in preventing irregular heart rhythms, controlling rheumatoid arthritis and suppressing breast cancer (Geusens et al., 1994; Belch and Muir, 1998; Nair et al., 1997; Rose and Connolly, 1990 Rose, 1997). Omega-3 fatty acids such as eicosapentaenoic acid (EPA; 20: 5n-3) and docosahexaenoic acid (DHA; 22: 6n-3) have major health benefits: for brain and retina development and the prevention of coronary artery disease (Swanson et al., 2012; FAO / WHO, 2010). Omega-3 fatty acids that cannot be synthesized in the body are recommended to be taken from diets and food (Plourde and Cunnane, 2007).

In this review, the effects of different processing parameters (such as production techniques, temperature, drying, cooking, smoking and freezing) on the aroma compounds of canned tuna have been compiled, since no such study has been conducted in the literature before.

### 2. VOLATILES OF CANNED TUNA

The canning process is one of the most important methods of preserving fish for a long time. Canned fish and fish products play a crucial role in human diet. Fish species possess different nutrient compositions and they become stable when the fish is subjected to thermal treatments during canning process. According to a report, lean fish is not recommended in the canning process, since the meat breaks down under high temperatures, thereby losing both its taste and texture (Aberoumand, 2014). The aroma changes during

the canning process depending on compounds derived from lipid oxidation and thermal degradation of carbohydrates, or the compounds originating from other reactions such as Strecker degradation and the Maillard reaction. The principal changes occur due to sterilization during the canning process which results in the release of furans. nitrogenous compounds, branched aldehydes and sulphur compounds (De Quirós et al., 2001). The canning process improves the organoleptic properties of fish obtained from canned silver. Canned smokes as well as minced fish from cans possess a marked increase of taste and color. The overall acceptance is gradually declines in all groups of canned fish (Khallaf et al., 1997). In the canning process, both enzymes and bacteria population should be permanently inactivated by heat treatments and when no reinfection or negative interaction takes place with the container, heat-processed fish can be kept for a very long time. On the other hand, a number of adverse effects also exist in the canning process. such as, loss of essential nutrients, release of unwanted compounds, browning, deterioration of lipids and proteins (Lukoshkina and Odoeva, 2003).

Temperature, used in seafood processing, has an enormous influence on the type and quantities of aroma and aroma-active compounds (Moreira et al., 2013). A number of studies have been conducted to aroma and aroma-active compounds from various cooked fish and other types of marine products (Milo et, al., 1993; Tao et al., 2014). Volatile compounds produced by oxidation during heat treatments of fish have been identified in several reports (Medina et al. 1999). De Quirós et al. (2001), identified the volatile compounds present in fresh and preserved sea urchins (*Paracentrotus lividus, Lamarck*) and reported that the sterilization process gave rise to significant changes in the profile of volatile compounds.

2.1. The effect of different production techniques on volatile composition of fish
2.1.1. Effect of drying

Drying is known to be a crucial parameters to prolong the shelf-life of fresh fish and other fishery products. It is possible for fishes to be maintained by solar drying, which focuses on reducing the water content to reduce or stop the activity of microorganisms (Farid et al. 2014). By long exposure to sunlight, fish may be oxidized, which can contribute to a reduction in nutrient quality and to increased health risks for consumers (Smida et al. 2014). Apart from health risk and nutritional loss, organoleptic character (such as aroma, color, texture etc.) of fish affects substantially from drying conditions. Aroma normally characterises foods sensory properties, and plays an important role when evaluating nutritional qualities and freshness (Diez-Simon et al., 2019; Dominguez et al., 2019). Previous studies have proven that most volatile compounds in dried meat products originate from fat oxidation (Kawai & Sakaguchi, 1996; Toldrá, 1998; Chung et al., 2007; Czerner et al., 2011). Furthermore, most of these substances are unstable and may undergo further reactions during storage in order to form other stable substances and chemical reactions intermediated by enzymes and micro-organisms continue to produce adverse volatile substances which effect the quality and limit the shelf life of the products (Jia et al., 2019; Shi et al., 2019). So far, most studies have focused on aroma changes during dried fish processing or storage (Ganguly et al., 2017; Leduc et al., 2012; Roseiro et al., 2017). In a recent study, Zhang et al. (2020) focused on the alterations of volatile compounds in dried fish at 4°C and 25°C during storage were investigated by HS-GC-IMS fingerprinting in combination with principal component analysis (PCA). In the 4°C stored samples, the most important volatile compounds were 3-methyl butanal, dimethyl ketone, and hexanal; whereas hexanal, 1-octan-3-ol, and 3methyl butanal were the dominant compounds of dry cured fish stored at 25°C while butyl methyl ketone was only seen at 25°C. According to results of this study, the PCA differentiated the samples clearly with respect to their storage temperature and time. Moretti et al. (2017) studied the chemical

changes and volatile formation during processing and maturation of a traditional salted fresh inland fish product (*Alosa fallax lacustris*). The researchers observed a sharp increase in volatile compounds of fresh fish to 9, 40, 70 and 100 days maturated and salted samples and the total aroma concentrations were showed a positive correlation with the drying process. In the light of these information, the process of drying is probably the critical stage of the quality of fish and fishery products, assisted by the fact that there are higher levels of volatile substances and malondialdehyde associated with rapid oxidation.

### 2.1.2. Effect of cooking

There are a number of uses of heating in fish processing, including cooking, baking, grilling, and roasting (Boonsumrej et al., 2007). Heat is an important parameter in the processing of fish for the purpose of improving flavour and taste, and to extend the shelf-life of fish and seafood products. Tuna flavour varies greatly depending upon the processing method used. Although quality features are very important for the economic value of tuna, there is very little information about the volatile and non-volatile compounds in tuna meat over the canning process (Zhang et al., 2019). It is well known that the heating process leads to changes in the complex taste patterns of fish meat. It is estimated that these changes are caused by proteolytic and lipolytic reactions. The changing aroma profile correlates with the taste changes that have been observed after exposure to heat in tuna meat. Various studies have been carried out on the quality characteristics of species of fish affected by heat treatment.

An earlier study characterized the volatile composition of boiled and steamed red mullet (Mullus barbatus) (Salum et al., 2017). According to results, hexanal and 2-phenoxyethanol compounds were found in raw fish samples while 3-hydroxybutan-2-one, 2,3-octadienone, (E,E)-2,4-heptadienal, linalool,  $\gamma$ -butyrolactone, 1-methylpyrrolidin-2-one, 2H-furan-5-one and pyrrolidin-2-one were detected in cooked fish

samples. Another research focused on the effects of different cooking practices to characterize lipid compositions and volatile profiles of farmed and wild sea bass (*Dicentrarchus labrax*) (Nieva-Echevarría et al., 2018). According to results, pyrroles, alkylpyrazines, alkylthiophenes and 2-ethylpyridine compounds were detected only in oven-baked samples. In addition, it was determined that farmed sea bass had richer aromatic compounds than wild samples.

Similarly, in the study of Zhang et al. (2019), the effect of the two major tuna-fish canning operations (steam boiling and canning) on the volatile and non-volatile compounds of tuna was determined. Regarding to the result of the study, 35, 35 and 34 volatile compound have been detected in raw, cooked, and canned tuna patterns respectively. Among these volatiles hydrocarbons and aldehydes have been identified as the most common compounds in all processes. The main contributors to raw tuna flavors were found to be decanal, nonanal, octanal, and (E)-2-nonenal, with their green and fatty properties. Another remarkable finding of this study was the release of 2-pentylfuran (green beans), 2-ethylfuran (rubber, baking) and heptanal (dry fish) during the steam cooking process. Moreover, 2-methyl-3-furanthiol, which contains a fleshy aromatic note also known as an important aromatherapy component, only found in canned tuna (Zhang et al., 2019). Another published study focused on the relationship between the composition of volatile compounds in the bigeye tuna (Thunnus obesus) and the variability through processing temperatures. In this study, Sun et al. (2013) examined the volatile compounds of tuna fish by means of HS-SPME-GC-MS" before and after exposure to temperatures of 70°C to 150°C. Researches mentioned that the relative amount of aldehydes, ketones, alcohols, hydrocarbons and heterocyclic compounds increased rapidly with increasing temperature. In another study, the oxidation of fish under thermal processing has been investigated using a static head-space gas chromatographic system to determine their volatile production.

Various process temperatures and periods have been analysed to simulate the conditions in industrial fish treatment. According to results, acetaldehyde, propanal, heptane, 2-ethylfuran, pentanal and hexanal were the most important volatile compounds. The results showed that 2-ethylfurane can be considered as a marker aroma compound to identify the oxidative stability of fish muscle during heat treatments (Medina et al., 1999).

### 2.1.3. Effect of smoking

Heat treatments decrease the water activity of fish flesh and this provides an excellent preservation via deactivation of microbial organisms. Thus, minimization of spoilage increases the conservation and so availability of fish for consumers. The smoking is also known as a kind of preservation method providing heat antimicrobial smoke chemicals such as formaldehydes and phenols, which act as antimicroorganisms providing and opportunity for the fish to produce a unique colour and excellent flavour (Longwe & Kapute, 2016). Changes that arise from the smoking of fish are hard to maintain, especially for heat sensitive nutrient (Adenike, 2014). The smoking does not only give food a particular taste, color and flavor, but also improves its conservation due to the dehydrating, bactericidal and antioxidant properties. The smoking technique is commonly applying to fish as either in cold (28-32°C) or hot (70-80°C) conditions (Alasalvar et al., 2011).

Salmon is the most common fish subjected to smoking process in the fish industry. Many aromatic compounds of smoked salmon can be traced back to smoke from wood. A further part of the smoked salmon flavour can either be attributed to the combination of odors of raw fish and an evolution of fish flesh flavoring according to the conditions of the smoking process. In an earlier study the volatile compounds in raw and smoked salmon were studied using two chromatography-olfactometry (frequency detection and odorant intensity) and gas

chromatography mass spectrometry. For fresh salmon, 49 odorous compounds were identified, and 74 for smoked salmon. In particular, phenolic compounds may be used as indicators of smoke development and process intensity. Once smoked salmon aromatic characteristics and their origin are known, it will become easier to adapt the method of smoking (Varlet, et al., 2006). In another study, Mansur et al. (2002) detected that smoked and baked salmon had twice as many volatile compounds as raw salmon. Among all the processes, smoking is considered the highest aroma components followed by baking, canning, surimi samples (kamaboko and chikuwa), drying and finally salting. In another study, Cardinal et al. (2006) investigated the association between odor characteristics and smoking parameters on smoked herring. The impact of three smoking temperatures (16, 24 and 32 °C) on both traditional as well as liquid smoke atomization has been tested. The findings highlight clear discrimination between products, as some of the odor characteristics are particularly related to smoking. A further study aimed to determine that volatile compounds in cold-smoked salmon products is identified by using gas chromatography in order to determine their suitability for the identification of these compounds quickly as indicators to forecast sensory quality. Smoked salmon odor contributed to guaiacol, cooked potato, and mushroom odors characteristic of degradation of fish fats, and sweet odors associated with the microbial metabolites 3methylbutanal and 3-hydroxybutanone were the strongest odors. Studies show that smoke-related compounds like furfural, phenol, guaiacol and 4methyl guaiacol are useful indicators for differentiating between products made different manufacturers that implement different handling and smoking techniques (Jónsdóttir et al., 2008). In another study, Stolyhwo et al. (2006) showed that the typical smoke taste was largely linked with the phenolic compounds in the smoke. Wood smoking compounds that are most active in traditional smoking are pyrogallol, resorcine, 4methylguaiacol, and less active are syringol and guaiacol.

### 2.1.4. Effect of freezing

Freezing is one of the commonly used preservation methods in fresh fish and other seafood. If fish are freezing, however, the result may be physical, chemical and enzymatic changes which ultimately lead to the tissue being in an undesirable state (Magnusse et al., 2008). Texture, flavour and color are some of the effects on quality that are present in frozen foods. Freezing rates, methods of thawing, and different temperatures are some of the factors affecting the magnitude of quality loss (Pourshamsian et al., 2012). The effect that freezing and thawing have on the muscles of frozen fish is a matter for the researchers to consider in order to determine the preservation conditions and textural characteristics of fish products (Díaz-Tenorio et al., 2007). The processing of frozen fish might result in a protein deformity. As soon as protein is denatured, the muscle structure, water holding capacity, color and aroma of frozen fish and fish products are affected, because muscle protein is the main factor for its structural properties (Sriket et al., 2007; Chavan et al., 2008). The freezing of fish results in the loss of important characteristics of quality, with increasing toughness and the formation of large ice crystals. Fish size, shape, and location (extra-cellular or intracellular) are known to have an influence on food quality (Mackie, 1993; Howgate, 1977).

Biochemical modifications (mainly in lipids) due to frozen storage are likely to have a significant impact on the sensory properties of fish. In salmon the formation of volatile lipid oxidation products is demonstrated during deep-freeze storage, and free fatty acids derived from lipid hydrolysis are more important for the decay during deep-freeze storage of trout when compared to lipid oxidation (Milo & Grosch, 1996; Refsgaard et al., 1998; Ingemansson et al., 1995). According to study of Iglesias et al. (2009), volatile profile of fresh and frozen-thawed from Italian and Spanish cultured gilthead sea bream fish during 266 days of deep

freeze storage were investigated by using SPME-GC-MS methodology. The results showed that aldehydes exhibited the highest peak ranges during deep refrigeration. On the other hand, the volatile composition of Italian fish started to increase after just 6 days of refrigeration. However, after 62 days of frozen storage, the first significant increase in volatility was observed in Spanish samples. In a prior study by Refsgaard et al. (1998) reported that the quantities of free fatty acids and lipid hydroperoxides present in fresh salmon could be used to forecast the sensory quality during the storage process. According to the study of Milo & Grosch (1996), the amount of (E,Z) -2.6nonaddienal, (Z) -3-hexenal, and (Z,Z) -3, 6nodienal compounds increased as a result of storage of salmon at -13°C for 26 weeks. Similar study by Farmer et al. (1997) showed that there has been no significant change in salmon smell or taste stored at -24°C for 33 weeks. In another research by Refsgaard et al. (1998)reported that not only volatile oxidation products account for significant sensory changes during deep-freeze storage of salmon, but other less volatile compounds could also contribute to the increased intensity of offflavor compounds. In the previous study, Alasalvar et al. (2005) investigated that bream and wild bream were compared for differences in their volatile components a storage period of 23 days in the ice. According to results, a total of 60 volatile compounds have been identified in culture and 78 in wild sea bream. During the whole storage period, the relative concentrations of several compounds (trimethylamine, piperidine, methanethiol, dimethyldisulfide, dimethyl trisulfide, 1-penten-3ol, 3-methyl-1-butanol and acetic acid) keep increasing and can serve as indicators as to the quality of the bream. The effects of different processes applied to various types of fish found in volatile compounds are depicted in Table 1.

3

Table 1.Effect of different processing methods on volatile composition of the fish species

|   |                   |                                         |                | processed of o | dominant group (μg/100 g) |                                                                                                                                                                                                            |       |
|---|-------------------|-----------------------------------------|----------------|----------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|   | type of fish      | main volatile compounds                 | dominant group | raw            | cooked                    | canned                                                                                                                                                                                                     | ref.¹ |
|   |                   | pentadecane                             | hydrocarbons   | 104            | 436.72                    | 780                                                                                                                                                                                                        |       |
| 1 | Yellowfin         | pentadecane, 2,6,10,14-<br>tetramethyl- | hydrocarbons   | 102            | 159.54                    | cooked         canned         ref.¹           436.72         780           159.54         295         Zhang and Dai, Dai, 20.47           17.53         20.47         (2019)           17.42         37.63 |       |
|   | Tellowtin<br>Tuna | heptadecane                             | hydrocarbons   | 42.37          | 64.45                     |                                                                                                                                                                                                            |       |
|   |                   | nonanal                                 | aldehyde       | 74.5           | 17.53                     | 20.47                                                                                                                                                                                                      |       |
|   |                   | octanal                                 | aldehyde       | 39.02          | 17.42                     | 37.63                                                                                                                                                                                                      |       |
|   |                   |                                         |                | processed      | of dominant group (%)     |                                                                                                                                                                                                            |       |
|   | type of fish      | main volatile compounds                 | dominant group | raw            | 100°C                     | 150°C                                                                                                                                                                                                      | ref.  |
| _ |                   | 2,4-Pentadienal                         | aldehyde       | 31.74          | 11.95                     | -                                                                                                                                                                                                          |       |
| 2 |                   | nonanal                                 | aldehyde       | 5.79           | 15.44                     | _                                                                                                                                                                                                          |       |
|   | Bigeye Tuna       | octanal                                 | aldehyde       | 5.63           | 9.63                      | _                                                                                                                                                                                                          |       |
|   |                   | heptanal                                | aldehyde       | 4.88           | 6.14                      | 0.03                                                                                                                                                                                                       |       |
|   |                   | 2-methyl-3-octanone                     | ketone         | 5.8            | _                         | _                                                                                                                                                                                                          |       |

### processed of dominant group (ng/25 g)

|   |              |                         |                      |         | Salmon 4 <sup>2</sup> |          |         | Salmon 5 <sup>3</sup> |          |            |           |
|---|--------------|-------------------------|----------------------|---------|-----------------------|----------|---------|-----------------------|----------|------------|-----------|
|   | type of fish | main volatile compounds | dominant group       | control | high Cys              | high Met | control | low Cys               | high Cys | low<br>Met | ref.      |
|   |              | trimethylamine          | amine                | 263     | 274                   | 277      | 4       | 5                     | 3        | 3          |           |
|   |              | 1-octen-3-ol            | unsaturated alcohols | 87      | 97                    | 118      | 54      | 47                    | 44       | 44         |           |
|   |              | 4-heptenal              | unsaturated alcohols | 132     | 112                   | 212      | 53      | 51                    | 31       | 49         |           |
|   |              | 2,4-heptadienal         | unsaturated alcohols | 87      | 104                   | 123      | 45      | 59                    | 63       | 52         |           |
| 3 |              | 1-penten-3-ol           | unsaturated alcohols | 23      | 29                    | 28       | 225     | 184                   | 167      | 150        |           |
|   | Salmon       | 1-pentanol              | alcohol              | 342     | 487                   | 462      | 107     | 54                    | 63       | 54         |           |
|   | Salmon       | hexanal                 | aldehydes            | 411     | 486                   | 513      | 456     | 352                   | 279      | 320        |           |
|   |              | heptanal                | aldehydes            | 258     | 336                   | 323      | 130     | 91                    | 94       | 96         | Methve    |
|   |              | nonanal                 | aldehydes            | 172     | 192                   | 182      | 120     | 105                   | 101      | 101        | n et al., |
|   |              | 4-heptenal (Z)          | unsaturated aldehyde | 132     | 112                   | 212      | 53      | 51                    | 31       | 49         | (2007)    |
|   |              | 2-butanone              | ketone               | 269     | 150                   | 275      | 27      | 22                    | 33       | 7          |           |
|   |              | 2-ethylfuran            | furan                | 274     | 250                   | 249      | 241     | 170                   | 278      | 258        |           |

'ref: Reference. 2Salmon 4 was a salmon fillet to which water (control), 50 mg/100 g cysteine (high Cys), or 50 mg/100 g methionine (high Met) was added prior to cooking. Salmon 5 was a salmon fillet to which water (control), 5 mg/100 g cysteine (low Cys), 50 mg/100 g cysteine (high Cys), or 5 mg/100 g methionine (low Met) was added prior to cooking.

www.journalrpfoods.com

| ref.                    |
|-------------------------|
|                         |
|                         |
|                         |
|                         |
| Kim et                  |
| al.,<br>(1992)          |
| (1772)                  |
|                         |
| 50<br>-<br>0<br>00<br>0 |

|              |                         |                         | concentration (mg/kg for STV, mg/L for TS) |     |      |        |  |  |  |
|--------------|-------------------------|-------------------------|--------------------------------------------|-----|------|--------|--|--|--|
| type of fish | main volatile compounds | dominant group          | STV                                        | TS  | ref. |        |  |  |  |
|              |                         | 3-methylbutanal         | aldehyde                                   | 140 | 1395 |        |  |  |  |
| _            |                         | 2-methylpropanal        | aldehyde                                   | ND  | 182  |        |  |  |  |
| 5            | Skipjack Tuna           | 2,3-butanedione         | ketone                                     | ND  | 274  | Cha et |  |  |  |
|              |                         | (E,E)-2,4-heptadienal   | aldehyde                                   | 41  | 6    | al.,   |  |  |  |
|              |                         | 2,3,5-trimethylpyrazine | pyrazine                                   | ND  | 37   | (1998) |  |  |  |

STV: skipjack tuna (Katsuwonus pelamis) viscera. TS: tuna sauce

### volatile compounds associated with spoilage in seven grades of tuna and mahi-mahi calculated by internal standard, (ng/g) fish sample

|              |                                   |                                                                                                                                                                                         |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type of fish | main volatile compounds           | dominant<br>group                                                                                                                                                                       | T1                                                                                                                                                                                                                                                    | T2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Т3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Т6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Т7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ref.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              | trimethylamine                    | amine                                                                                                                                                                                   | 12390                                                                                                                                                                                                                                                 | 16470                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| V II (:      | dimethylamine                     | amine                                                                                                                                                                                   | 3988                                                                                                                                                                                                                                                  | 2133                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | acetone                           | ketone                                                                                                                                                                                  | 1389                                                                                                                                                                                                                                                  | 2839                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| runa         | tert-butanol                      | alcohol                                                                                                                                                                                 | 646.7                                                                                                                                                                                                                                                 | 467.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 534.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 686.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 559.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 566.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | 2-ethylhexanol                    | alcohol                                                                                                                                                                                 | 53.73                                                                                                                                                                                                                                                 | 71.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bai et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| type of fish | main volatile compounds           | dominant<br>group                                                                                                                                                                       | M1                                                                                                                                                                                                                                                    | M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | al.,<br>(2019)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | trimethylamine                    | amine                                                                                                                                                                                   | 14800                                                                                                                                                                                                                                                 | 18020                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 138100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 119700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 243000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | dimethylamine                     | amine                                                                                                                                                                                   | ND                                                                                                                                                                                                                                                    | 4086                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Mahi-mahi    | methanol                          | alcohol                                                                                                                                                                                 | 1696                                                                                                                                                                                                                                                  | 2942                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | tert-butanol                      | alcohol                                                                                                                                                                                 | 1045                                                                                                                                                                                                                                                  | 1129                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 994.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 996.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 888.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | acetone                           | ketone                                                                                                                                                                                  | 206.8                                                                                                                                                                                                                                                 | 231.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 884.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 764.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _            | Yellowfin<br>Tuna<br>type of fish | Yellowfin Tuna  trimethylamine dimethylamine acetone tert-butanol 2-ethylhexanol  type of fish main volatile compounds trimethylamine dimethylamine dimethylamine methanol tert-butanol | Yellowfin Tuna  trimethylamine dimethylamine acetone tert-butanol 2-ethylhexanol dominant group trimethylamine alcohol dominant group trimethylamine dimethylamine dimethylamine amine dimethylamine amine dimethylamine alcohol tert-butanol alcohol | type of fish         main volatile compounds dimethylamine         group         11           Yellowfin Tuna         acetone dimethylamine         amine amine amine amine amine dimethylamine         3988           type of fish         tert-butanol alcohol alcohol alcohol alcohol alcohol amine dimethylamine amine amine dimethylamine amine amine amine amine methanol alcohol li696         M1           Mahi-mahi         methanol alcohol alcohol alcohol alcohol li045 | type of fish         main volatile compounds         group         11         12           Yellowfin Tuna         trimethylamine         amine         12390         16470           Yellowfin Tuna         acetone         ketone         1389         2839           tert-butanol         alcohol         646.7         467.6           2-ethylhexanol         alcohol         53.73         71.76           type of fish         main volatile compounds         dominant group         M1         M2           trimethylamine         amine         14800         18020           Mahi-mahi         methanol         alcohol         1696         2942           tert-butanol         alcohol         1045         1129 | type of fish         main volatile compounds group         TI         T2         T3           Yellowfin Tuna         trimethylamine amine amine dimethylamine amine acetone ketone li389         2133         3201           Yellowfin Tuna         acetone ketone li389         2839         1399           tert-butanol alcohol 646.7         467.6         650           2-ethylhexanol alcohol 53.73         71.76         53.65           type of fish main volatile compounds frimethylamine amine amine limethylamine amine limethylamine amine limethylamine amine limethylamine amine limethylamine limethylamine amine limethylamine alcohol li696         14830         5277           Mahi-mahi methanol alcohol li696         2942         2532         1003 | type of fish         main volatile compounds         dominant group         T1         T2         T3         T4           Yellowfin Tuna         trimethylamine         amine         12390         16470         15260         23730           Tyellowfin Tuna         acetone         ketone         1389         2133         3201         5729           Tuna         tert-butanol         alcohol         646.7         467.6         650         534.4           2-ethylhexanol         alcohol         53.73         71.76         53.65         50.11           type of fish         main volatile compounds         group         M1         M2         M3         M4           trimethylamine         amine         14800         18020         14830         14800           Mahi-mahi         methanol         alcohol         1696         2942         2532         3365           tert-butanol         alcohol         1045         1129         1003         1014 | type of fish         main volatile compounds         dominant group         T1         T2         T3         T4         T5           Yellowfin Tuna         trimethylamine         amine         12390         16470         15260         23730         36180           Yellowfin Tuna         acetone         ketone         1389         2133         3201         5729         8209           Yellowfin acetone         ketone         1389         2839         1399         1902         1268           12-ethylhexanol         alcohol         646.7         467.6         650         534.4         686.1           2-ethylhexanol         alcohol         53.73         71.76         53.65         50.11         52.34           type of fish         main volatile compounds         group         M1         M2         M3         M4         M5           trimethylamine         amine         14800         18020         14830         14800         138100           Mahi-mahi         methanol         alcohol         1696         2942         2532         3365         1305           tert-butanol         alcohol         1045         1129         1003         1014         994.5 | type of fish         main volatile compounds         dominant group         T1         T2         T3         T4         T5         T6           Yellowfin Tuna         trimethylamine         amine         12390         16470         15260         23730         36180         28890           Yellowfin Tuna         acetone         ketone         1389         2839         1399         1902         1268         700           tert-butanol         alcohol         646.7         467.6         650         534.4         686.1         559.4           2-ethylhexanol         alcohol         53.73         71.76         53.65         50.11         52.54         52.63           type of fish         main volatile compounds         main volatile compounds         M1         M2         M3         M4         M5         M6           trimethylamine         amine         14800         18020         14830         14800         138100         119700           Mahi-mahi         methanol         alcohol         1696         2942         2532         3365         1305         1296           tert-butanol         alcohol         1045         1129         1003         1014         994.5         996.2 <td>type of fish         main volatile compounds         dominant group         T1         T2         T3         T4         T5         T6         T7           Yellowfin Tuna         trimethylamine         amine         12390         16470         15260         23730         36180         28890         33620           Yellowfin Tuna         dimethylamine         amine         3988         2133         3201         5729         8209         1768         4141           Tuna         tert-butanol         alcohol         646.7         467.6         650         534.4         686.1         559.4         566.1           2-ethylhexanol         alcohol         53.75         71.76         53.65         50.11         52.34         52.63         31.47           type of fish         main volatile compounds group         MI         M2         M3         M4         M5         M6         M7           trimethylamine         amine         14800         18020         14830         14800         138100         119700         243000           Mahi-mahi         methanol         alcohol         1696         2942         2532         3365         1305         1296         1093           Mahi-</td> | type of fish         main volatile compounds         dominant group         T1         T2         T3         T4         T5         T6         T7           Yellowfin Tuna         trimethylamine         amine         12390         16470         15260         23730         36180         28890         33620           Yellowfin Tuna         dimethylamine         amine         3988         2133         3201         5729         8209         1768         4141           Tuna         tert-butanol         alcohol         646.7         467.6         650         534.4         686.1         559.4         566.1           2-ethylhexanol         alcohol         53.75         71.76         53.65         50.11         52.34         52.63         31.47           type of fish         main volatile compounds group         MI         M2         M3         M4         M5         M6         M7           trimethylamine         amine         14800         18020         14830         14800         138100         119700         243000           Mahi-mahi         methanol         alcohol         1696         2942         2532         3365         1305         1296         1093           Mahi- |

### concentration (mg/kg)

| ref.           |
|----------------|
|                |
|                |
|                |
| Wu et          |
| al.,<br>(2021) |
|                |
|                |
|                |

YDJ (5% sodium chloride, 1 d drying), NGW (5% sodium chloride, 1 d drying), TS (5% sodium chloride, 1 d drying), ML (5% sodium chloride, 5 d drying), YZD (5% sodium chloride, 5 d drying), HWW (5% sodium chloride, 5 d drying)

|   |                   |                            |                   | the relative levels volatiles of tuna during storage at 30°C/hour |       |       |      |       | the relative levels of tuna volatiles during storage in ice/day |       |       |       |       |       |                                      |
|---|-------------------|----------------------------|-------------------|-------------------------------------------------------------------|-------|-------|------|-------|-----------------------------------------------------------------|-------|-------|-------|-------|-------|--------------------------------------|
|   | type of<br>fish   | main volatile<br>compounds | dominant<br>group | 0                                                                 | 12    | 24    | 36   | 48    | 0                                                               | 4     | 8     | 12    | 16    | 20    | ref.                                 |
| 8 | Yellowfin<br>Tuna | hexanal                    | aldehyde          | 30.90                                                             | 21.47 | 2.18  | 0.17 | 0.33  | 30.90                                                           | 8.85  | 5.83  | 2.14  | 1.44  | 1.31  |                                      |
|   |                   | heptanal                   | aldehyde          | 5.99                                                              | 4.48  | 0.63  | 2.00 | 1.88  | 5.99                                                            | 3.5   | 2.10  | 0.33  | tr    | tr    | Edirisin<br>ghe et<br>al.,<br>(2007) |
|   |                   | 3-methyl-1-<br>butanol     | alcohol           | ND                                                                | 0.32  | 13.52 | 46.5 | 57.82 | ND                                                              | 34.64 | 47.09 | 53.34 | 59.71 | 62.73 |                                      |
|   |                   | 2-nonanone                 | ketone            | 28.37                                                             | 11.15 | 2.45  | tr   | ND    | 28.37                                                           | 5.54  | 0.08  | tr    | tr    | tr    |                                      |

Values are means of five independent determinations (n = 5); tr, trace amounts; ND, not detected. These values do not total to 100 as minor volatiles are not reported.

|                  |                 |                            |                   | percentage area (%) |           |         |         |         |                |                     |  |  |  |
|------------------|-----------------|----------------------------|-------------------|---------------------|-----------|---------|---------|---------|----------------|---------------------|--|--|--|
| 9 .              | type of<br>fish | main volatile<br>compounds | dominant<br>group | raw                 | precooked | 150 MPa | 300 MPa | 450 MPa | 600 MPa        | ref.                |  |  |  |
| Skipjack<br>Tuna | Skipjack        | hexanal                    | aldehyde          | 19.2                | 13.9      | 19,8    | 17.4    | 16.5    | 10.3           | Jiranun<br>takul et |  |  |  |
|                  | 1-octen- 3-ol   | alcohol                    | 8.7               | 5.7                 | 9.5       | 7.6     | 7.4     | 5.1     | al.,<br>(2018) |                     |  |  |  |

10

|   | type of<br>fish  | main volatile<br>compounds | dominant<br>group | unwashed sample<br>peak area (%) | washed sample (3% maltodextrin, 30 min)<br>peak area (%) | ref.           |
|---|------------------|----------------------------|-------------------|----------------------------------|----------------------------------------------------------|----------------|
|   |                  | (E,E)-2,4- Heptadienal     | aldehyde          | 8010                             | 6928                                                     |                |
|   |                  | Heptanal                   | aldehyde          | 4340                             | 1055                                                     |                |
| ) | Skipjack<br>Tuna | 2-Octenal                  | aldehyde          | 2017                             | ND                                                       | Junsi et       |
|   |                  | 2-Pentylfuran              | furan             | 4793                             | 1428                                                     | al.,<br>(2012) |
|   |                  | 3,5-Octazdien-2-one        | ketone            | 4236                             | ND                                                       |                |
|   |                  |                            |                   | ND = not detected                |                                                          |                |

11

|                          |                               |                | peak area of each compounds using selected fragment ion |      |      |      |      |      |      |      |            |          |
|--------------------------|-------------------------------|----------------|---------------------------------------------------------|------|------|------|------|------|------|------|------------|----------|
| type of<br>fish          | main volatile<br>compounds    | dominant group | 0                                                       | 1    | 2    | 3    | 4    | 5    | 6    | 7    | <b>8</b> ° | ref.     |
|                          | propanal                      | aldehyde       | 1220                                                    | 279  | 95.7 | 36.8 | 43.4 | 252  | 54.7 | 34.4 | 702        |          |
|                          | acetone                       | ketone         | 65.7                                                    | 58.3 | 80.8 | 97.2 | 79.8 | 200  | 168  | 132  | 404        | Ishiguro |
| Bonito                   | ethanol                       | alcohol        | 2.48                                                    | 52.3 | 149  | 318  | 185  | 2900 | 2121 | 1070 | 2770       | et al.,  |
|                          | 1-penten-3-ol                 | alcohol        | 661                                                     | 433  | 198  | 195  | 194  | 703  | 350  | 182  | 523        | (2001)   |
| <sup>a</sup> times of sn | 2-ethylfuran<br>noking (hour) | furan          | 167                                                     | 103  | 218  | 144  | 160  | 258  | 282  | 302  | 399        |          |

## changes in volatile of dried Bonito during storage at 30°C ratio of peak area

|    | type of fish            | main<br>volatile<br>compounds | dominant group | 0    | 1    | 3    | 5    | 7 days | ref.          |
|----|-------------------------|-------------------------------|----------------|------|------|------|------|--------|---------------|
| 12 |                         | (2E)-hexenal                  | aldehyde       | 0.06 | 0.21 | 0.25 | 0.27 | 0.28   |               |
|    | Powdered Dried          | 1-penten-3-ol                 | alcohol        | 0.13 | 0.32 | 0.34 | 0.36 | 0.39   | Sakakibara et |
|    | Bonito<br>(Katsuobushi) | hexadecanoi<br>c acid         | acid           | 3.76 | 5.02 | 4.81 | 2.93 | 2.95   | al., (1988)   |
|    |                         | tetradecanoi<br>c acid        | acid           | 1.02 | 1.47 | 1.52 | 1.53 | 1.42   |               |

the mean value (n = 3) of the log 10 transformed peak areas for samples after ice storage

|    |               | storage time (day)         |                |     |     |     |                    |                  |                            |  |  |  |  |
|----|---------------|----------------------------|----------------|-----|-----|-----|--------------------|------------------|----------------------------|--|--|--|--|
| .= | type of fish  | main volatile<br>compounds | dominant group | O   | 1   | 2   | 3                  | 4                | ref.                       |  |  |  |  |
|    |               | hexanal                    | aldehyde       | 2.9 | 4.1 | 5.1 | 5.7                | 5.6              |                            |  |  |  |  |
|    |               | 4-heptenal                 | aldehyde       | ND  | 3.2 | 3.9 | 4.2                | 4.4              |                            |  |  |  |  |
|    |               | 2,4-hexadienal             | aldehyde       | ND  | 3.3 | 3.3 | 3.7                | 3.6              | 5                          |  |  |  |  |
|    | Jack Mackerel | 2,4-heptadienal            | aldehyde       | ND  | 3.9 | 4.5 | 4.6                | 4.5              |                            |  |  |  |  |
| 13 |               | octanal                    | aldehyde       | 2.9 | 2.8 | 3.8 | 4.0                | 4.0              |                            |  |  |  |  |
|    |               | trimethylamine             | amine          | ND  | ND  | 4.2 | 4.7                | 5.5              | Miyasaki et al.,<br>(2011) |  |  |  |  |
|    |               | hexanal                    | aldehyde       | 3.1 | 3.6 | 3.7 | 4.0                |                  |                            |  |  |  |  |
|    |               | 4-heptenal                 | aldehyde       | ND  | ND  | ND  | 2.8                |                  |                            |  |  |  |  |
|    |               | 2,4-hexadienal             | aldehyde       | ND  | ND  | ND  | D ND just 3 days y | just 3 days were |                            |  |  |  |  |
|    | Skipjack Tuna | 2,4-heptadienal            | aldehyde       | 2.8 | 3.0 | 3.2 | 3.3                | preferred        |                            |  |  |  |  |
|    |               | octanal                    | aldehyde       | 2.8 | 2.8 | 2.8 | 3.0                |                  |                            |  |  |  |  |
|    |               | trimethylamine             | amine          | ND  | ND  | ND  | 4.9                |                  |                            |  |  |  |  |
|    |               |                            |                |     |     |     |                    |                  |                            |  |  |  |  |

ND = not detected

| peak areas of volatiles produced after i | ncubation of fish muscle at 40 and 60°C |
|------------------------------------------|-----------------------------------------|
| at 40°C for days                         | at 60°C for days                        |

|    |                             |                            |                        | at 40°C for days |      |      |      |      | at 60°C for days |      |      |       |       |             |
|----|-----------------------------|----------------------------|------------------------|------------------|------|------|------|------|------------------|------|------|-------|-------|-------------|
|    | type of fish                | main volatile<br>compounds | dominant group         | 0                | 1    | 2    | 3    | 4    | 0                | 1    | 2    | 3     | 4     | ref.        |
|    |                             | acetaldehyde               | aldehyde               | 321              | 1125 | 4405 | 5561 | 6779 | 390              | 4618 | 6812 | 8124  | 8829  |             |
| 14 | 14                          | propanal<br>heptane        | aldehyde               | 387              | 2041 | 3778 | 3848 | 4480 | 493              | 5706 | 7328 | 10447 | 12706 |             |
|    | Canned Tuna (not specified) |                            | aliphatic hydrocarbons | 0                | 0    | 208  | 938  | 1562 | 0                | 325  | 359  | 428   | 545   | Medina et   |
|    | ()                          | pentanal                   | aldehyde               | 0                | 101  | 340  | 584  | 987  | 0                | 277  | 482  | 916   | 1357  | al., (1999) |
|    |                             | hexanal                    | aldehyde               | 0                | 0    | 22   | 75   | 186  | 0                | 60   | 148  | 293   | 442   |             |
|    |                             | 2-ethylfuran               | furan                  | 0                | 0    | 32   | 69   | 136  | 0                | 975  | 4210 | 12234 | 23427 |             |

concentration (µg of dodecane / 100 g salmon)

15

| type of fish | main volatile<br>compounds | dominant<br>group | unsmoked salmon | smoked salmon | ref.       |  |
|--------------|----------------------------|-------------------|-----------------|---------------|------------|--|
|              | 8-heptadecene              | hydrocarbon       | 23.96           | 9.91          |            |  |
|              | hexadecanal                | aldehyde          | 18.74           | 34.82         |            |  |
| Salmon       | tetradecanoic acid         | acid              | 5.83            | -             | Varlet, et |  |
|              | nonanal                    | aldehyde          | 5.09            | 344.98        | al.,       |  |
|              | octanal                    | aldehyde          | 2.23            | -             | (2006)     |  |
|              | heptanal                   | aldehyde          | 2.13            | 1.32          |            |  |

Each concentration is the mean of three aromatic extracts injected corresponding to three individual fillets smoked at 32 °C.

|    |                             |                            |                                                 | chemical constituents (peak area %) of canned salmon produced from watermarked pink salmon |       |       |       |                                                 |       |       |       |       |       |                     |
|----|-----------------------------|----------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------|-------|-------|-------|-------------------------------------------------|-------|-------|-------|-------|-------|---------------------|
|    |                             | degree                     | degree of watermarking after 2 month of storage |                                                                                            |       |       |       | degree of watermarking after 9 month of storage |       |       |       |       |       |                     |
|    | type of fish                | main volatile<br>compounds | dominant<br>group                               | Α                                                                                          | ВС    | DE    | FG    | 1                                               | A     | ВС    | DE    | FG    | 1     | ref.                |
| 16 | Pink Salmon                 | dimethyl sulfide           | sulfur<br>compound                              | 41.21                                                                                      | 37.88 | 22.55 | 16.77 | 45.86                                           | 50.29 | 51.65 | 26.14 | 21.38 | 57.60 |                     |
| ١. | (Oncorhynchus<br>gorbuscha) | acetaldehyde               | aldehyde                                        | 4.06                                                                                       | 5.95  | 7.56  | 7.19  | 6.18                                            | 4.27  | 4.95  | 7.86  | 7.9   | 5.28  | Oliveira<br>et al., |
|    | gorbuschuj                  | acetone                    | ketone                                          | 5 69                                                                                       | 8 40  | 9 22  | 7 38  | 6.89                                            | 7 45  | 8.37  | 12 07 | 13.58 | 8 18  | (2005)              |

I = Commercial canned pink salmon

relative content (%) of individual VOCs detected in salt cured and dried Indian mackerel

|    | type of fish       | main volatile<br>compounds | dominant<br>group | SCF°           | SCDFID          | SCDF2D              | SCDF3D      | SCDF4D         | ref.                            |
|----|--------------------|----------------------------|-------------------|----------------|-----------------|---------------------|-------------|----------------|---------------------------------|
| 17 |                    | hexanal                    | aldehyde          | $ND^b$         | 29.68           | 47.80               | 47.80       | 1.31           |                                 |
|    | Indian<br>Mackerel | 1-penten-3ol               | alcohol           | 40.30          | 63.69           | 45.91               | 2.32        | 1.17           | Bhaskara<br>n et al.,<br>(2018) |
|    | Macketel           | 3-methyl butanol           | alcohol           | 39.24          | ND              | ND                  | ND          | ND             |                                 |
|    | acor. II           | Trib and a late of         | ODEID. II I       | 11 1 1 10 16 1 | CODEOD. II I IO | I I LO LO CODEZDO I | lı 171 l.l. | (: L CODEAD: L | (2010)                          |

°SCF: s salt cured fish without drying. SCDFID: salt cured and 1 day dried fish. SCDF2D: salt cured and 2 day dried fish. SCDF3D: salt cured and 3 day dried fish. SCDF4D: salt cured and 4 day dried fish. bND = not detected.

#### peak areas as x 10<sup>5</sup>

19

| _  | type of fish | main volatile compounds | dominant group | Smoked | baked | ref.                     |
|----|--------------|-------------------------|----------------|--------|-------|--------------------------|
| 18 |              | 1-penten-3-ol           | alcohol        | 641    | -     | <u> </u>                 |
|    | Salmon       | 3-methyl-butanal        | aldehyde       | 449    | 256   | Mansur et<br>al., (2002) |
|    |              | hexanal                 | aldehyde       | 388    | 579   | ,                        |

| acetic acid, anhydride | acid     | 326 | 789 |
|------------------------|----------|-----|-----|
| heptanal               | aldehyde | 213 | 524 |

### the content of volatile stored raw fillets at 4°C

| _  | type of fish | main volatile compounds | dominant group | 0  | 1  | 2     | 3      | 4 days | ref.           |
|----|--------------|-------------------------|----------------|----|----|-------|--------|--------|----------------|
| 19 |              | acetic acid             | acid           | nd | nd | 51.49 | 104.01 | 107.58 |                |
|    | Salmon       | ethanol                 | alcohol        | nd | nd | 18.64 | 34.03  | 57.40  | Mikš-Krajnik   |
|    |              | trimethylamine          | amine          | nd | nd | 9.15  | 11.19  | 12.31  | et al., (2016) |

nd = not detected

### volatile compounds of pre-cooked skipjack tuna bone with sequential treatments

|    | type of fish  | main volatile compounds | dominant group | original bone | СВ    | AlB   | HxB  | B-HxB | Bio-Ca | ref.                       |
|----|---------------|-------------------------|----------------|---------------|-------|-------|------|-------|--------|----------------------------|
| -  |               | heptanal                | aldehyde       | 606.86        | 39.01 | ND    | ND   | ND    | ND     | _                          |
| 20 |               | octanal                 | aldehyde       | 414.30        | 40.06 | 16.03 | 4.03 | ND    | ND     |                            |
|    | Skipjack Tuna | 2-hexenal               | aldehyde       | 352.20        | 12.71 | 14.37 | 3.73 | ND    | ND     | Benjakul et<br>al., (2018) |
|    |               | benzaldehyde            | aldehyde       | 298.4         | 36.29 | 21.61 | 4.44 | ND    | ND     |                            |
|    |               | nonanal                 | aldehyde       | 246.94        | 84.27 | 11.92 | 9.05 | ND    | ND     |                            |

ND not detectable. Values are expressed as abundance (×10<sup>5</sup>)

### 3. CONCLUSIONS

Fish is not only a popular nutritious water animal but also a food source. For processing that in compliance with the protocol, it represents a reasonable percentage of the food being consumed. Different kinds of processes have an effect on the aroma compounds of fish. When the effects of all processes applied to fish in general on aroma compounds are examined, it is understood that aldehydes and hydrocarbons are the

predominant volatile compounds. As a result, consumer preference for fish rich in aroma compounds depends entirely on the best conditions for processing and storing fish.

### **Acknowledgements**

This review was presented at the "2<sup>nd</sup> International Virtual Conference on Raw Materials to Processed Foods (03-04 June 2021)".

### REFERENCES

- Aberoumand, A. (2014). Studies on the effects of processing on food quantity of two selected consumed marine fishes in Iran. *International Food Research Journal*, 21(4), 1429.
- Adenike, O. M. (2014). The effect of different processing methods on the nutritional quality and microbiological status of cat fish (*Clarias lezera*). *Journal of Food Processing and Technology*, 5(6).
- Alasalvar, C., Miyashita, K., Shahidi, F., & Wanasundara, U. (Eds.). (2011). Handbook of seafood quality, safety and health applications. John Wiley & Sons.
- Alasalvar, C., Taylor, K. A., & Shahidi, F. (2005). Comparison of volatiles of cultured and wild sea bream (*Sparus aurata*) during storage in ice by dynamic headspace analysis/gas chromatography- mass spectrometry. *Journal of agricultural and food chemistry*, 53(7), 2616-2622.
- Bai, J., Baker, S. M., Goodrich-Schneider, R. M., Montazeri, N., & Sarnoski, P. J. (2019). Aroma Profile Characterization of Mahi-Mahi and Tuna for Determining Spoilage Using Purge and Trap Gas Chromatography-Mass Spectrometry. *Journal of Food Science*, 84(3), 481-489.
- Belch, J. J. F., & Muir, A. (1998). n-6 and n-3 essential fatty acids in rheumatoid arthritis and other rheumatic conditions. *Proceedings of the Nutrition Society*, 57(4), 563-569.
- Benjakul, S., Mad-Ali, S., Senphan, T., & Sookchoo, P. (2018). Characteristics of biocalcium from pre-cooked skipjack tuna bone as affected by different treatments. *Waste and Biomass Valorization*, 9(8), 1369-1377.
- Bhaskaran, T. V., Nithin, C. T., Srinivasa Gopal, T. K., Bindu, J., & Ravishankar, C. N. (2018). Identification of volatile organic compounds with reference to water activity in salt cured and sun dried Indian mackerel (*Rastrelliger kanagurta*) by Headspace Gas Chromatography and Mass Spectrometry (HS-GCMS).
- Boonsumrej, S., Chaiwanichsiri, S., Tantratian, S., Suzuki, T., & Takai, R. (2007). Effects of freezing and thawing on the quality changes of tiger shrimp (*Penaeus monodon*) frozen by air-blast and cryogenic freezing. *Journal of Food Engineering*, 80(1), 292-299.
- Cardinal, M., Cornet, J., Serot, T., & Baron, R. (2006). Effects of the smoking process on odour characteristics of smoked herring (*Clupea harengus*) and relationships with phenolic compound content. *Food chemistry*, 96(1), 137-146.

- Cha, Y. J., & Cadwallader, K. R. (1998). Aroma-active compounds in skipjack tuna sauce. *Journal of Agricultural and Food Chemistry*, 46(3), 1123-1128.
- Chavan, B. R., Basu, S., & Kovale, S. R. (2008). Development of edible texturised dried fish granules from low-value fish croaker (*Otolithus argenteus*) and its storage characteristics. *Chiang Mai Journal of Science*, 1, 173-182.
- Chi, C. F., Hu, F. Y., Wang, B., Li, Z. R., & Luo, H. Y. (2015). Influence of amino acid compositions and peptide profiles on antioxidant capacities of two protein hydrolysates from skipjack tuna (*Katsuwonus pelamis*) dark muscle. *Marine Drugs*, 13(5), 2580-2601.
- Chung, H. Y., Yeung, C. W., Kim, J. S., & Chen, F. (2007). Static headspace analysis-olfactometry (SHA-O) of odor impact components in salted-dried white herring (*Ilisha elongata*). Food Chemistry, 104(2), 842-851.
- Czerner, M., Tomás, M. C., & Yeannes, M. I. (2011). Ripening of salted anchovy (*Engraulis anchoita*): development of lipid oxidation, colour and other sensorial characteristics. *Journal of the Science of Food and Agriculture*, 91(4), 609-615.
- De Quirós, A. R. B., López-Hernández, J., González-Castro, M., De la Cruz-Garcia, C., & Simal-Lozano, J. (2001). Comparison of volatile components in fresh and canned sea urchin (*Paracentrotus lividus, Lamarck*) gonads by GC–MS using dynamic headspace sampling and microwave desorption. *European Food Research and Technology*, 212(6), 643-647.
- Di Giuseppe, D., Crippa, A., Orsini, N., & Wolk, A. (2014). Fish consumption and risk of rheumatoid arthritis: a doseresponse meta-analysis. *Arthritis research & therapy*, 16(5), 446.
- Díaz-Tenorio, L. M., García-Carreño, F. L., & Pacheco-Aguilar, R. A. M. Ó. N. (2007). Comparison of freezing and thawing treatments on muscle properties of whiteleg shrimp (*Litopenaeus vannamei*). *Journal of Food Biochemistry*, 31(5), 563-576.
- Diez-Simon, C., Mumm, R., & Hall, R. D. (2019). Mass spectrometry-based metabolomics of volatiles as a new tool for understanding aroma and flavour chemistry in processed food products. Metabolomics, 15(3), 1-20.
- Domínguez, R., Pateiro, M., Gagaoua, M., Barba, F. J., Zhang, W., & Lorenzo, J. M. (2019). A comprehensive review on

- lipid oxidation in meat and meat products. Antioxidants, 8(10), 429.
- Edirisinghe, R. K., Graffham, A. J., & Taylor, S. J. (2007). Characterisation of the volatiles of yellowfin tuna (*Thunnus albacares*) during storage by solid phase microextraction and GC–MS and their relationship to fish quality parameters. *International journal of food science & technology*, 42(10), 1139-1147.
- FAO, (2020a). Food and Agriculture Organization of the United Nations, Fisheries and Aquaculture Department, *Katsuwonus pelamis* (Linnaeus, 1758) <a href="http://www.fao.org/fishery/species/2494/en">http://www.fao.org/fishery/species/2494/en</a>
- FAO, (2020b). Food and Agriculture Organization of the United Nations, Fisheries and Aquaculture Department, *Thunnus albacares* (Bonnaterre, 1788). <a href="http://www.fao.org/fishery/species/2497/en">http://www.fao.org/fishery/species/2497/en</a>
- FAO/WHO, 2010 Report of the Joint FAO/WHO Expert Consultation on the Risks and Benefits of Fish Consumption. Rome, 25-29 January 2010.
- Farid, F. B., Latifa, G. A., Nahid, M. N., & Begum, M. (2014). Effects of Sun—drying on proximate composition and pH of Shoal fish (*C. striatus; Bloch, 1801*) treated with Salt and Salt—turmeric storage at Room Temperature (27° C—30° C). *Journal of Agriculture and Veterinary Science,* 7(9), 1-8.
- Farmer, L. J., McConnell, J. M., & Graham, W. D. (1997). Flavor characteristics and lipid composition of Atlantic salmon.
- Fromentin, J. M., & Fonteneau, A. (2001). Fishing effects and life history traits: a case study comparing tropical versus temperate tunas. *Fisheries Research*, 53(2), 133-150.
- Ganguly, S., Mahanty, A., Mitra, T., Raman, R. K., & Mohanty, B. P. (2017). Volatile compounds in hilsa (*Tenualosa ilisha, Hamilton*) as detected by static headspace gas chromatography and mass spectrometry. *Journal of Food Processing and Preservation*, 41(6), e13212.
- Geusens, P., Wouters, C., Nijs, J., Jiang, Y., & Dequeker, J. (1994). Long-term effect of omega-3 fatty acid supplementation in active rheumatoid arthritis. Arthritis & Rheumatism: Official *Journal of the American College of Rheumatology*, 37(6), 824-829.
- Howgate, P., Mackie, P. R., Whittle, K. J., & Farmer, J. (1977). Petroleum tainting in fish. Rapports et Procès-Verbaux des Réunions du Conseil Permanent International pour l'Exploration de la Mer.
- IATTC (2019) Tunas, billfishes and other pelagic species in the eastern Pacific Ocean in 2018 Inter-Am Trop Tuna Comm Fish Status Rep 17 La Jolla CA USA
- Iglesias, J., Medina, I., Bianchi, F., Careri, M., Mangia, A., & Musci, M. (2009). Study of the volatile compounds useful for the characterisation of fresh and frozen-thawed cultured gilthead sea bream fish by solid-phase microextraction gas chromatography—mass spectrometry. Food Chemistry, 115(4), 1473-1478.
- Ingemansson, T., Kaufmann, P., & Ekstrand, B. (1995). Multivariate evaluation of lipid hydrolysis and oxidation data from light and dark muscle of frozen stored rainbow trout (*Oncorhynchus mykiss*). *Journal of Agricultural and Food Chemistry*, 43(8), 2046-2052.
- Ishiguro, K., Wakabayashi, H., & Kawaguchi, H. (2001). Changes in volatile compounds during smoking process and evaluation of major aroma constituents of dried bonito (*katuo-bushi*). *Journal of the Japanese Society for Food Science and Technology* (Japan).
- ISSF, (2015). ISSF tuna stock status update, 2015: status of the world fisheries for tuna. ISSF Tech. Rep. 03A, 1-96.

- Jia, S., Li, Y., Zhuang, S., Sun, X., Zhang, L., Shi, J., ... & Luo, Y. (2019). Biochemical changes induced by dominant bacteria in chill-stored silver carp (*Hypophthalmichthys molitrix*) and GC-IMS identification of volatile organic compounds. *Food microbiology*, 84, 103248.
- Jiranuntakul, W., Nakwiang, N., Berends, P., Kasemsuwan, T., Saetung, T., & Devahastin, S. (2018). Physicochemical, microstructural, and microbiological properties of skipjack tuna (*Katsuwonus pelamis*) after high-pressure processing. *Journal of food science*, 83(9), 2324-2336.
- Jónsdóttir, R., Ólafsdóttir, G., Chanie, E., & Haugen, J. E. (2008). Volatile compounds suitable for rapid detection as quality indicators of cold smoked salmon (*Salmo salar*). Food chemistry, 109(1), 184-195.
- Junsi, M., Usawakesmanee, W., & Siripongvutikorn, S. (2012). Effect of using starch on off-odors retention in tuna dark meat. *International Food Research Journal*, 19(2).
- Khallaf, M. F., El-Samkary, M. A., Ahmed, S. A., & Dept. Taleb, M. (1997). Chemical and bacteriological changes occurring during the processing of Egyptian sliver carp fish. Egypt J. Aquat. Biol, 1(2), 53-70.
- Kawai, T., & Sakaguchi, M. (1996). Fish flavor. *Critical Reviews in Food Science & Nutrition*, 36(3), 257-298.
- Kim, M. N., & Lindsay, R. C. (1992). Origin of flavor compounds in canned tuna and their relation to quality. *Journal of the Korean Society of Food Science and Nutrition*, 21(6), 731-737.
- Kumar, G., & Kocour, M. (2015). Population genetic structure of tunas inferred from molecular markers: a review. *Reviews in Fisheries Science & Aquaculture*, 23(1), 72-89.
- Leduc, F., Tournayre, P., Kondjoyan, N., Mercier, F., Malle, P., Kol, O., ... & Duflos, G. (2012). Evolution of volatile odorous compounds during the storage of European seabass (*Dicentrarchus labrax*). Food Chemistry, 131(4), 1304-1311.
- Liu, D., Zhang, X., Li, T., Yang, H., Zhang, H., Regenstein, J. M., & Zhou, P. (2015). Extraction and characterization of acidand pepsin-soluble collagens from the scales, skins and swim-bladders of grass carp (Ctenopharyngodon idella). Food Bioscience, 9, 68-74.
- Longwe, P., & Kapute, F. (2016). Nutritional composition of smoked and sun dried pond raised Oreochromis karongae (*Trewavas, 1941*) and Tilapia rendalli (*Boulenger, 1896*).
- Lukoshkina, M. V., & Odoeva, G. A. (2003). Kinetics of chemical reactions for prediction of quality of canned fish during storage. Applied Biochemistry and Microbiology, 39(3), 321-327.
- Mackie, I. M. (1993). The effects of freezing on flesh proteins. *Food Reviews International*, 9(4), 575-610.
- Magnusse, O. A., Hemmingsen, A. K. T., Hardarsson, V., Nordtvedt, T. S., & Eikevik, T. M. (2008). Freezing of fish. In "Frozen Food Science and Technology" edit by Judith A. Evans.
- Mansur, M. A., Hossain, M. I., Takamuro, H., & Matoba, T. (2002). Flavour components of some processed. fish and fishery products of Japan. *Bangladesh Journal of Fisheries Research*, 6(1), 89-97.
- Medina, I., Satué-Gracia, M. T., & Frankel, E. N. (1999). Static headspace gas chromatographic analyses to determine oxidation of fish muscle lipids during thermal processing. *Journal of the American Oil Chemists' Society*, 76(2), 231-236.
- Methven, L., Tsoukka, M., Oruna-Concha, M. J., Parker, J. K., & Mottram, D. S. (2007). Influence of sulfur amino acids on the volatile and nonvolatile components of cooked salmon

- (Salmo salar). Journal of agricultural and food chemistry, 55(4), 1427-1436.
- Miao, H., Liu, Q., Bao, H., Wang, X., & Miao, S. (2017). Effects of different freshness on the quality of cooked tuna steak. *Innovative Food Science & Emerging Technologies*, 44, 67-73.
- Mikš-Krajnik, M., Yoon, Y. J., Ukuku, D. O., & Yuk, H. G. (2016).
  Volatile chemical spoilage indexes of raw Atlantic salmon (Salmo salar) stored under aerobic condition in relation to microbiological and sensory shelf lives. Food Microbiology, 53. 182-191.
- Milo, C., & Grosch, W. (1993). Changes in the odorants of boiled trout (*Salmo fario*) as affected by the storage of the raw material. *Journal of Agricultural and Food Chemistry*, 41(11), 2076-2081.
- Milo, C., & Grosch, W. (1996). Changes in the odorants of boiled salmon and cod as affected by the storage of the raw material. *Journal of Agricultural and Food Chemistry*, 44(8), 2366-2371.
- Miyasaki, T., Hamaguchi, M., & Yokoyama, S. (2011). Change of volatile compounds in fresh fish meat during ice storage. *Journal of Food Science*, 76(9), C1319-C1325.
- Moreira, N., Valente, L. M. P., Castro-Cunha, M., Cunha, L. M., & de Pinho, P. G. (2013). Effect of storage time and heat processing on the volatile profile of Senegalese sole (*Solea senegalensis Kaup, 1858*) muscle. *Food chemistry,* 138(4), 2365-2373.
- Moretti, V. M., Vasconi, M., Caprino, F., & Bellagamba, F. (2017). Fatty acid profiles and volatile compounds formation during processing and ripening of a traditional salted dry fish product. *Journal of Food Processing and Preservation*, 41(5), e13133.
- Nair, S. S., Leitch, J. W., Falconer, J., & Garg, M. L. (1997). Prevention of cardiac arrhythmia by dietary (n-3) polyunsaturated fatty acids and their mechanism of action. *The Journal of nutrition*, 127(3), 383-393.
- Nieva-Echevarría, B., Goicoechea, E., Manzanos, M. J., & Guillén, M. D. (2018). Effects of different cooking methods on the lipids and volatile components of farmed and wild European sea bass (*Dicentrarchus labrax*). Food Research International, 103, 48-58.
- Oliveira, A. C., Crapo, C. A., Himelbloom, B., Vorholt, C., & Hoffert, J. (2005). Headspace gas chromatography-mass spectrometry and electronic nose analysis of volatile compounds in canned Alaska pink salmon having various grades of watermarking. *Journal of food science*, 70(7), s419-s426.
- Pieniak, Z., Verbeke, W., & Scholderer, J. (2010). Healthrelated beliefs and consumer knowledge as determinants of fish consumption. *Journal of human nutrition and dietetics*, 23(5), 480-488.
- Plourde, M., & Cunnane, S. C. (2007). Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as supplements. Applied physiology, nutrition, and metabolism, 32(4), 619-634.
- Pourshamsian, K., Ghomi, M. R., & Nikoo, M. (2012). Fatty acids and proximate composition of farmed great Sturgeon (*Huso huso*) affected by thawing methods, frying oils and chill storage. Advanced studies in biology, 4(2), 67-76.
- Refsgaard, H. H., Brockhoff, P. B., & Jensen, B. (1998). Sensory and Chemical Changes in Farmed Atlantic Salmon (*Salmo s alar*) during Frozen Storage. *Journal of Agricultural and Food Chemistry*, 46(9), 3473-3479.

- Rose, D. P. (1997). Effects of dietary fatty acids on breast and prostate cancers: evidence from in vitro experiments and animal studies. *The American journal of clinical nutrition*, 66(6), 1513S-1522S.
- Rose, D. P., & Connolly, J. M. (1990). Effects of fatty acids and inhibitors of eicosanoid synthesis on the growth of a human breast cancer cell line in culture. Cancer research, 50(22), 7139-7144.
- Roseiro, L. C., Santos, C., Gonçalves, H., Serrano, C., Aleixo, C., Partidário, A., ... & da Ponte, D. J. B. (2017). Susceptibility of dry-cured tuna to oxidative deterioration and biogenic amines generation: I. Effect of NaCl content, antioxidant type and ageing. *Food chemistry*, 228, 26-34.
- Sakakibara, H., Yanai, T., Yajima, I., & Hayashi, K. (1988). Changes in volatile flavor compounds of powdered dried bonito (*katsuobushi*) during storage. *Agricultural and biological chemistry*, 52(11), 2731-2739.
- Salum, P., Guclu, G., & Selli, S. (2017). Comparative evaluation of key aroma-active compounds in raw and cooked red mullet (*Mullus barbatus*) by aroma extract dilution analysis. *Journal of agricultural and food chemistry*, 65(38), 8402-8408.
- Shi, Y., Li, X., & Huang, A. (2019). A metabolomics-based approach investigates volatile flavor formation and characteristic compounds of the Dahe black pig dry-cured ham. *Meat science*, 158, 107904.
- Smida, M. A. B., Bolje, A., Ouerhani, A., Barhoumi, M., Mejri, H., & Fehri-Bedoui, R. (2014). Effects of Drying on the Biochemical Composition of Atherina boyeri from the Tunisian Coast. *Food and Nutrition Sciences*, 5(14), 1399.
- Sriket, P., Benjakul, S., Visessanguan, W., & Kijroongrojana, K. (2007). Comparative studies on the effect of the freeze—thawing process on the physicochemical properties and microstructures of black tiger shrimp (*Penaeus monodon*) and white shrimp (*Penaeus vannamei*) muscle. *Food Chemistry*, 104(1), 113-121.
- Stotyhwo, A., Kotodziejska, I., & Sikorski, Z. E. (2006). Long chain polyunsaturated fatty acids in smoked Atlantic mackerel and Baltic sprats. *Food chemistry*, 94(4), 589-
- Sun, J., Wang, Q.J., Huang, J., Hou, Y.D., Chen, Y., & Su, X. (2013). Influence of heating temperature on the development of volatile compounds in bigeye tuna meat (*Thunnus obesus*) as assessed by E-nose and SPME-GC/MS. *International Food Research Journal*, 20, 3077-3083.
- Swanson, D., Block, R., & Mousa, S. A. (2012). Omega-3 fatty acids EPA and DHA: health benefits throughout life. *Advances in nutrition*, *3*(1), 1-7.
- Tao, N. P., Wu, R., Zhou, P. G., Gu, S. Q., & Wu, W. (2014). Characterization of odor-active compounds in cooked meat of farmed obscure puffer (*Takifugu obscurus*) using gas chromatography—mass spectrometry—olfactometry. *Journal of Food And Drug Analysis*, 22(4), 431-438.
- Toldra, F. (1998). Proteolysis and lipolysis in flavour development of dry-cured meat products. *Meat science*, 49, S101-S110.
- Varlet, V., Knockaert, C., Prost, C., & Serot, T. (2006). Comparison of odor-active volatile compounds of fresh and smoked salmon. *Journal of agricultural and food* chemistry, 54(9), 3391-3401.
- Virtanen, J. K., Mozaffarian, D., Chiuve, S. E., & Rimm, E. B. (2008). Fish consumption and risk of major chronic

- disease in men. *The American journal of clinical nutrition*, 88(6), 1618-1625.
- Wu, S., Yang, J., Dong, H., Liu, Q., Li, X., Zeng, X., & Bai, W. (2021). Key aroma compounds of Chinese dry-cured Spanish mackerel (*Scomberomorus niphonius*) and their potential metabolic mechanisms. *Food Chemistry*, 342, 128381.
- Yang, X. R., Zhao, Y. Q., Qiu, Y. T., Chi, C. F., & Wang, B. (2019). Preparation and characterization of gelatin and antioxidant peptides from gelatin hydrolysate of skipjack tuna (Katsuwonus pelamis) bone stimulated by in vitro gastrointestinal digestion. Marine Drugs, 17(2), 78.
- Zhang, Q., Ding, Y., Gu, S., Zhu, S., Zhou, X., & Ding, Y. (2020). Identification of changes in volatile compounds in drycured fish during storage using HS-GC-IMS. *Food Research International*, 137, 109339.
- Zhang, Y., Ma, X., & Dai, Z. (2019). Comparison of nonvolatile and volatile compounds in raw, cooked, and canned yellowfin tuna (*Thunnus albacores*). Journal of Food Processing and Preservation, 43(10), e14111.